Suppr超能文献

使用独立成分分析(ICA)和格兰杰因果关系在频谱域中研究功能磁共振成像(fMRI)脑网络之间的关系,揭示了精神分裂症患者与健康对照之间的明显差异。

Investigation of relationships between fMRI brain networks in the spectral domain using ICA and Granger causality reveals distinct differences between schizophrenia patients and healthy controls.

作者信息

Demirci Oguz, Stevens Michael C, Andreasen Nancy C, Michael Andrew, Liu Jingyu, White Tonya, Pearlson Godfrey D, Clark Vincent P, Calhoun Vince D

机构信息

The Mind Research Network, Albuquerque, NM 87131, USA.

出版信息

Neuroimage. 2009 Jun;46(2):419-31. doi: 10.1016/j.neuroimage.2009.02.014. Epub 2009 Feb 23.

Abstract

Functional network connectivity (FNC) is an approach that examines the relationships between brain networks (as opposed to functional connectivity (FC) that focuses upon the relationships between single voxels). FNC may help explain the complex relationships between distributed cerebral sites in the brain and possibly provide new understanding of neurological and psychiatric disorders such as schizophrenia. In this paper, we use independent component analysis (ICA) to extract the time courses of spatially independent components and then use these in Granger causality test (GCT) to investigate causal relationships between brain activation networks. We present results using both simulations and fMRI data of 155 subjects obtained during two different tasks. Unlike previous research, causal relationships are presented over different portions of the frequency spectrum in order to differentiate high and low-frequency effects and not merged in a scalar. The results obtained using Sternberg item recognition paradigm (SIRP) and auditory oddball (AOD) tasks showed FNC differentiations between schizophrenia and control groups, and explained how the two groups differed during these tasks. During the SIRP task, secondary visual and cerebellum activation networks served as hubs and included most complex relationships between the activated regions. Secondary visual and temporal lobe activations replaced these components during the AOD task.

摘要

功能网络连接性(FNC)是一种研究脑网络之间关系的方法(与专注于单个体素之间关系的功能连接性(FC)相对)。FNC可能有助于解释大脑中分布式脑区之间的复杂关系,并可能为精神分裂症等神经和精神疾病提供新的认识。在本文中,我们使用独立成分分析(ICA)来提取空间独立成分的时间进程,然后将其用于格兰杰因果检验(GCT),以研究脑激活网络之间的因果关系。我们展示了使用模拟数据和155名受试者在两项不同任务中获得的功能磁共振成像(fMRI)数据得出的结果。与之前的研究不同,因果关系是在频谱的不同部分呈现的,以便区分高频和低频效应,而不是合并为一个标量。使用斯特恩伯格项目识别范式(SIRP)和听觉失匹配负波(AOD)任务获得的结果表明,精神分裂症患者组和对照组之间存在FNC差异,并解释了两组在这些任务中的不同表现。在SIRP任务期间,次级视觉和小脑激活网络起到了枢纽作用,并且包含了激活区域之间最复杂的关系。在AOD任务期间,次级视觉和颞叶激活取代了这些成分。

相似文献

2
A method for functional network connectivity among spatially independent resting-state components in schizophrenia.
Neuroimage. 2008 Feb 15;39(4):1666-81. doi: 10.1016/j.neuroimage.2007.11.001. Epub 2007 Nov 13.
3
A method for multitask fMRI data fusion applied to schizophrenia.
Hum Brain Mapp. 2006 Jul;27(7):598-610. doi: 10.1002/hbm.20204.
4
Abnormal synchrony and effective connectivity in patients with schizophrenia and auditory hallucinations.
Neuroimage Clin. 2014 Sep 4;6:171-9. doi: 10.1016/j.nicl.2014.08.027. eCollection 2014.
5
A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia.
MAGMA. 2010 Dec;23(5-6):351-66. doi: 10.1007/s10334-010-0197-8. Epub 2010 Feb 17.
7
Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data.
Neuroimage. 2010 Oct 15;53(1):65-77. doi: 10.1016/j.neuroimage.2010.05.063. Epub 2010 Jun 1.
9
Auditory mismatch impairments are characterized by core neural dysfunctions in schizophrenia.
Brain. 2015 May;138(Pt 5):1410-23. doi: 10.1093/brain/awv049. Epub 2015 Mar 4.
10
Functional network connectivity during rest and task conditions: a comparative study.
Hum Brain Mapp. 2013 Nov;34(11):2959-71. doi: 10.1002/hbm.22118. Epub 2012 Jun 26.

引用本文的文献

1
A new transfer entropy method for measuring directed connectivity from complex-valued fMRI data.
Front Neurosci. 2024 Jul 10;18:1423014. doi: 10.3389/fnins.2024.1423014. eCollection 2024.
4
A New Method on Construction of Brain Effective Connectivity Based on Functional Magnetic Resonance Imaging.
Comput Math Methods Med. 2022 Apr 4;2022:4542106. doi: 10.1155/2022/4542106. eCollection 2022.
5
Functional connectome of arousal and motor brainstem nuclei in living humans by 7 Tesla resting-state fMRI.
Neuroimage. 2022 Apr 1;249:118865. doi: 10.1016/j.neuroimage.2021.118865. Epub 2022 Jan 12.
7
Galvanic Vestibular Stimulation Improves Subnetwork Interactions in Parkinson's Disease.
J Healthc Eng. 2021 May 13;2021:6632394. doi: 10.1155/2021/6632394. eCollection 2021.
8
Disjoint subspaces for common and distinct component analysis: Application to the fusion of multi-task FMRI data.
J Neurosci Methods. 2021 Jul 1;358:109214. doi: 10.1016/j.jneumeth.2021.109214. Epub 2021 May 3.
9
Distributed causality in resting-state network connectivity in the acute and remitting phases of RRMS.
BMC Neurosci. 2020 Sep 15;21(1):37. doi: 10.1186/s12868-020-00590-4.
10
Altered Spatial and Temporal Brain Connectivity in the Salience Network of Sensorineural Hearing Loss and Tinnitus.
Front Neurosci. 2019 Mar 19;13:246. doi: 10.3389/fnins.2019.00246. eCollection 2019.

本文引用的文献

2
A projection pursuit algorithm to classify individuals using fMRI data: Application to schizophrenia.
Neuroimage. 2008 Feb 15;39(4):1774-82. doi: 10.1016/j.neuroimage.2007.10.012.
3
A method for functional network connectivity among spatially independent resting-state components in schizophrenia.
Neuroimage. 2008 Feb 15;39(4):1666-81. doi: 10.1016/j.neuroimage.2007.11.001. Epub 2007 Nov 13.
4
Dissecting corollary discharge dysfunction in schizophrenia.
Psychophysiology. 2007 Jul;44(4):522-9. doi: 10.1111/j.1469-8986.2007.00533.x.
5
Aberrant "default mode" functional connectivity in schizophrenia.
Am J Psychiatry. 2007 Mar;164(3):450-7. doi: 10.1176/ajp.2007.164.3.450.
6
A new method for detecting causality in fMRI data of cognitive processing.
Cogn Process. 2006 Mar;7(1):42-52. doi: 10.1007/s10339-005-0019-5. Epub 2005 Oct 27.
7
Testing for directed influences among neural signals using partial directed coherence.
J Neurosci Methods. 2006 Apr 15;152(1-2):210-9. doi: 10.1016/j.jneumeth.2005.09.001. Epub 2005 Nov 2.
8
Corollary discharge dysfunction in schizophrenia: can it explain auditory hallucinations?
Int J Psychophysiol. 2005 Nov-Dec;58(2-3):179-89. doi: 10.1016/j.ijpsycho.2005.01.014. Epub 2005 Aug 31.
9
Abnormal hemodynamics in schizophrenia during an auditory oddball task.
Biol Psychiatry. 2005 May 1;57(9):1029-40. doi: 10.1016/j.biopsych.2005.01.035.
10
"Gamma synchrony" in first-episode schizophrenia: a disorder of temporal connectivity?
Am J Psychiatry. 2005 Mar;162(3):459-65. doi: 10.1176/appi.ajp.162.3.459.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验