Suppr超能文献

采用模糊学习方法提高工业园区生物污水处理厂出水的神经网络预测能力。

Improving neural network prediction of effluent from biological wastewater treatment plant of industrial park using fuzzy learning approach.

作者信息

Pai Tzu-Yi, Wang S C, Chiang C F, Su H C, Yu L F, Sung P J, Lin C Y, Hu H C

机构信息

Department of Environmental Engineering and Management, Chaoyang University of Technology, Wufeng, Taichung 41349, Taiwan.

出版信息

Bioprocess Biosyst Eng. 2009 Oct;32(6):781-90. doi: 10.1007/s00449-009-0304-2. Epub 2009 Mar 1.

Abstract

Three types of adaptive network-based fuzzy inference system (ANFIS) in which the online monitoring parameters served as the input variable were employed to predict suspended solids (SS(eff)), chemical oxygen demand (COD(eff)), and pH(eff) in the effluent from a biological wastewater treatment plant in industrial park. Artificial neural network (ANN) was also used for comparison. The results indicated that ANFIS statistically outperforms ANN in terms of effluent prediction. When predicting, the minimum mean absolute percentage errors of 2.90, 2.54 and 0.36% for SS(eff), COD(eff) and pH(eff) could be achieved using ANFIS. The maximum values of correlation coefficient for SS(eff), COD(eff), and pH(eff) were 0.97, 0.95, and 0.98, respectively. The minimum mean square errors of 0.21, 1.41 and 0.00, and the minimum root mean square errors of 0.46, 1.19 and 0.04 for SS(eff), COD(eff), and pH(eff) could also be achieved.

摘要

采用三种基于自适应网络的模糊推理系统(ANFIS),将在线监测参数作为输入变量,来预测工业园区生物废水处理厂出水的悬浮固体(SS(eff))、化学需氧量(COD(eff))和pH值(pH(eff))。同时使用人工神经网络(ANN)进行对比。结果表明,在出水预测方面,ANFIS在统计学上优于ANN。预测时,使用ANFIS对SS(eff)、COD(eff)和pH(eff)的最小平均绝对百分比误差分别为2.90%、2.54%和0.36%。SS(eff)、COD(eff)和pH(eff)的相关系数最大值分别为0.97、0.95和0.98。SS(eff)、COD(eff)和pH(eff)的最小均方误差分别为0.21、1.41和0.00,最小均方根误差分别为0.46、1.19和0.04。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验