Suppr超能文献

利用基于在线混合模糊神经网络软测量模型的控制系统提高厌氧/缺氧/好氧工艺中的溶解氧控制。

Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process.

机构信息

College of Environment and Energy, South China University of Technology, Guangzhou, 510640, P.R. China,

出版信息

J Ind Microbiol Biotechnol. 2013 Dec;40(12):1393-401. doi: 10.1007/s10295-013-1334-y. Epub 2013 Sep 20.

Abstract

An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.

摘要

开发了一种基于在线混合模糊神经网络软测量模型的控制系统,以优化中试规模厌氧/缺氧/好氧(A(2)/O)工艺中的溶解氧浓度。为了提高控制系统的性能,采用了自适应模糊 C 均值聚类算法和自适应神经网络模糊推理系统(ANFIS)模型。所提出的控制系统允许在线实施实验系统的每一种操作策略。进行了一组涉及可变水力停留时间(HRT)、进水 pH(pH)、好氧反应器中的溶解氧(DO)和混合液回流比(r)的实验。使用所提出的系统,使出水 COD 稳定在设定点以下。通过优化溶解氧浓度实现了改进,因为使用实时实施的操作规则优化了处理过程的性能。该系统允许部署各种专家操作方法,目的是在使用最少能量的同时,将出口处的有机物质最小化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验