Suppr超能文献

光系统I捕光复合物Lhca4低能形式的起源:最低激子与电荷转移态的混合

The origin of the low-energy form of photosystem I light-harvesting complex Lhca4: mixing of the lowest exciton with a charge-transfer state.

作者信息

Romero Elisabet, Mozzo Milena, van Stokkum Ivo H M, Dekker Jan P, van Grondelle Rienk, Croce Roberta

出版信息

Biophys J. 2009 Mar 4;96(5):L35-7. doi: 10.1016/j.bpj.2008.11.043.

Abstract

The peripheral light-harvesting complex of photosystem I contains red chlorophylls (Chls) that, unlike the typical antenna Chls, absorb at lower energy than the primary electron donor P700. It has been shown that the red-most absorption band arises from two excitonically coupled Chls, although this interaction alone cannot explain the extreme red-shifted emission (25 nm, approximately 480 cm(-1) for Lhca4 at 4 K) that the red Chls present. Here, we report the electric field-induced absorption changes (Stark effect) on the Q(y) region of the Lhca4 complex. Two spectral forms, centered around 690 nm and 710 nm, were necessary to describe the absorption and Stark spectra. The analysis of the lowest energy transition yields a high value for the change in dipole moment, Deltamu(710nm) approximately 8 Df(-1), between the ground and excited states as compared with monomeric, Deltamu = 1 D, or dimeric, Deltamu = 5 D, Chl a in solution. The high value of the Deltamu demonstrates that the origin of the red-shifted emission is the mixing of the lowest exciton state with a charge-transfer state of the dimer. This energetic configuration, an excited state with charge-transfer character, is very favorable for the trapping and dissipation of excitations and could be involved in the photoprotective mechanism(s) of the photosystem I complex.

摘要

光系统I的外周捕光复合物含有红色叶绿素(Chls),与典型的天线叶绿素不同,其吸收能量低于初级电子供体P700。研究表明,最红的吸收带源于两个激子耦合的叶绿素,尽管仅这种相互作用无法解释红色叶绿素所呈现的极端红移发射(4K时Lhca4为25nm,约480cm-1)。在此,我们报道了Lhca4复合物Q(y)区域的电场诱导吸收变化(斯塔克效应)。需要两种以690nm和710nm为中心的光谱形式来描述吸收光谱和斯塔克光谱。对最低能量跃迁的分析得出,与溶液中的单体叶绿素a(Δμ = 1D)或二聚体叶绿素a(Δμ = 5D)相比,基态和激发态之间的偶极矩变化值很高,Δμ(710nm)约为8Df-1。Δμ的高值表明,红移发射的起源是最低激子态与二聚体电荷转移态的混合。这种具有电荷转移特征的激发态能量构型,非常有利于激发的捕获和耗散,可能参与了光系统I复合物的光保护机制。

相似文献

4
Excitation energy transfer pathways in Lhca4.
Biophys J. 2005 Mar;88(3):1959-69. doi: 10.1529/biophysj.104.049916. Epub 2005 Jan 14.
5
Complete mapping of energy transfer pathways in the plant light-harvesting complex Lhca4.
Phys Chem Chem Phys. 2020 Nov 18;22(44):25720-25729. doi: 10.1039/d0cp03351k.
6
Excitation decay pathways of Lhca proteins: a time-resolved fluorescence study.
J Phys Chem B. 2005 Nov 10;109(44):21150-8. doi: 10.1021/jp0519316.
7
Preferential pathways for light-trapping involving beta-ligated chlorophylls.
Biochim Biophys Acta. 2009 Oct;1787(10):1254-65. doi: 10.1016/j.bbabio.2009.05.010. Epub 2009 May 27.
8
Structural modeling of the Lhca4 Subunit of LHCI-730 peripheral antenna in photosystem I based on similarity with LHCII.
J Biol Chem. 2003 Nov 7;278(45):44542-51. doi: 10.1074/jbc.M306777200. Epub 2003 Aug 15.
9
Mixing of exciton and charge-transfer states in light-harvesting complex Lhca4.
Phys Chem Chem Phys. 2016 Jul 28;18(28):19368-77. doi: 10.1039/c6cp02225a. Epub 2016 Jul 4.
10
Origin of Low-Lying Red States in the Lhca4 Light-Harvesting Complex of Photosystem I.
J Phys Chem Lett. 2023 Sep 21;14(37):8345-8352. doi: 10.1021/acs.jpclett.3c02091. Epub 2023 Sep 13.

引用本文的文献

2
Identification and design principles of far-red-absorbing chlorophyll in the light-harvesting complex.
J Biol Chem. 2025 Apr 18;301(6):108518. doi: 10.1016/j.jbc.2025.108518.
3
Eustigmatophyte model of red-shifted chlorophyll a absorption in light-harvesting complexes.
Commun Biol. 2024 Oct 29;7(1):1406. doi: 10.1038/s42003-024-07101-9.
4
Environment-dependent chlorophyll-chlorophyll charge transfer states in Lhca4 pigment-protein complex.
Front Plant Sci. 2024 Aug 7;15:1412750. doi: 10.3389/fpls.2024.1412750. eCollection 2024.
5
Structure of the red-shifted Fittonia albivenis photosystem I.
Nat Commun. 2024 Jul 27;15(1):6325. doi: 10.1038/s41467-024-50655-9.
6
Unveiling large charge transfer character of PSII in an iron-deficient cyanobacterial membrane: A Stark fluorescence spectroscopy study.
Photosynth Res. 2024 Jun;160(2-3):77-86. doi: 10.1007/s11120-024-01099-1. Epub 2024 Apr 15.
7
Coloring Outside the Lines: Exploiting Pigment-Protein Synergy for Far-Red Absorption in Plant Light-Harvesting Complexes.
J Am Chem Soc. 2024 Feb 7;146(5):3508-3520. doi: 10.1021/jacs.3c13373. Epub 2024 Jan 29.
8
Origin of Low-Lying Red States in the Lhca4 Light-Harvesting Complex of Photosystem I.
J Phys Chem Lett. 2023 Sep 21;14(37):8345-8352. doi: 10.1021/acs.jpclett.3c02091. Epub 2023 Sep 13.
9
Structural insights into a unique PSI-LHCI-LHCII-Lhcb9 supercomplex from moss Physcomitrium patens.
Nat Plants. 2023 May;9(5):832-846. doi: 10.1038/s41477-023-01401-4. Epub 2023 Apr 24.
10
LHCA4 residues surrounding red chlorophylls allow for fine-tuning of the spectral region for photosynthesis in .
Front Plant Sci. 2023 Jan 17;13:1118189. doi: 10.3389/fpls.2022.1118189. eCollection 2022.

本文引用的文献

1
Red antenna states of photosystem I from Synechocystis PCC 6803.
Biochemistry. 2008 May 20;47(20):5536-43. doi: 10.1021/bi800121t. Epub 2008 Apr 23.
4
Structure, function and regulation of plant photosystem I.
Biochim Biophys Acta. 2007 May;1767(5):335-52. doi: 10.1016/j.bbabio.2007.03.004. Epub 2007 Mar 15.
5
Excitation decay pathways of Lhca proteins: a time-resolved fluorescence study.
J Phys Chem B. 2005 Nov 10;109(44):21150-8. doi: 10.1021/jp0519316.
6
Structure and function of photosystems I and II.
Annu Rev Plant Biol. 2006;57:521-65. doi: 10.1146/annurev.arplant.57.032905.105350.
7
Pigment-pigment interactions in Lhca4 antenna complex of higher plants photosystem I.
J Biol Chem. 2005 May 27;280(21):20612-9. doi: 10.1074/jbc.M500705200. Epub 2005 Mar 23.
8
The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I.
J Biol Chem. 2003 Dec 5;278(49):49223-9. doi: 10.1074/jbc.M309203200. Epub 2003 Sep 22.
10
The Lhca antenna complexes of higher plants photosystem I.
Biochim Biophys Acta. 2002 Oct 3;1556(1):29-40. doi: 10.1016/s0005-2728(02)00304-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验