Suppr超能文献

Lhca4中的激发能转移途径。

Excitation energy transfer pathways in Lhca4.

作者信息

Gibasiewicz K, Croce R, Morosinotto T, Ihalainen J A, van Stokkum I H M, Dekker J P, Bassi R, van Grondelle R

机构信息

Faculty of Sciences, Division of Physics and Astronomy, Department of Biophysics, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.

出版信息

Biophys J. 2005 Mar;88(3):1959-69. doi: 10.1529/biophysj.104.049916. Epub 2005 Jan 14.

Abstract

EET in reconstituted Lhca4, a peripheral light-harvesting complex from Photosystem I of Arabidopsis thaliana, containing 10 chlorophylls and 2 carotenoids, was studied at room temperature by femtosecond transient absorption spectroscopy. Two spectral forms of Lut were observed in the sites L1 and L2, characterized by significantly different interactions with nearby chlorophyll a molecules. A favorable interpretation of these differences is that the efficiency of EET to Chls is about two times lower from the "blue" Lut in the site L1 than from the "red" Lut in the site L2 due to fast IC in the former case. A major part of the energy absorbed by the "red" Lut, approximately 60%-70%, is transferred to Chls on a sub-100-fs timescale from the state S(2) but, in addition, minor EET from the hot S(1) state within 400-500 fs is also observed. EET from the S(1) state to chlorophylls occurs also within 2-3 ps and is ascribed to Vio and/or "blue" Lut. EET from Chl b to Chl a is biphasic and characterized by time constants of approximately 300 fs and 3.0 ps. These rates are ascribed to EET from Chl b spectral forms absorbing at approximately 644 nm and approximately 650 nm, respectively. About 25% of the excited Chls a decays very fast-within approximately 15 ps. This decay is proposed to be related to the presence of the interacting Chls A5 and B5 located next to the carotenoid in the site L2 and may imply some photoprotective role for Lhca4 in the photosystem I super-complex.

摘要

利用飞秒瞬态吸收光谱技术,在室温下研究了重组的Lhca4(拟南芥光系统I的外周捕光复合体,含有10个叶绿素和2个类胡萝卜素)中的激子能量转移(EET)。在L1和L2位点观察到了两种光谱形式的叶黄质,其特征是与附近叶绿素a分子的相互作用显著不同。对这些差异的一种合理的解释是,由于前者中快速的内转换,L1位点的“蓝色”叶黄质向叶绿素的EET效率比L2位点的“红色”叶黄质低约两倍。“红色”叶黄质吸收的大部分能量,约60%-70%,在100飞秒以下的时间尺度上从S(2)态转移到叶绿素,但此外,在400-500飞秒内也观察到了来自热S(1)态的少量EET。从S(1)态到叶绿素的EET也在2-3皮秒内发生,归因于紫黄质和/或“蓝色”叶黄质。从叶绿素b到叶绿素a的EET是双相的,时间常数约为300飞秒和3.0皮秒。这些速率分别归因于在约644纳米和约650纳米处吸收的叶绿素b光谱形式的EET。约25%的激发态叶绿素a在约15皮秒内快速衰减。这种衰减被认为与L2位点中位于类胡萝卜素旁边的相互作用的叶绿素A5和B5的存在有关,可能意味着Lhca4在光系统I超复合体中具有某种光保护作用。

相似文献

1
Excitation energy transfer pathways in Lhca4.
Biophys J. 2005 Mar;88(3):1959-69. doi: 10.1529/biophysj.104.049916. Epub 2005 Jan 14.
6
Structural modeling of the Lhca4 Subunit of LHCI-730 peripheral antenna in photosystem I based on similarity with LHCII.
J Biol Chem. 2003 Nov 7;278(45):44542-51. doi: 10.1074/jbc.M306777200. Epub 2003 Aug 15.
7
Complete mapping of energy transfer pathways in the plant light-harvesting complex Lhca4.
Phys Chem Chem Phys. 2020 Nov 18;22(44):25720-25729. doi: 10.1039/d0cp03351k.
9
Singlet and triplet state transitions of carotenoids in the antenna complexes of higher-plant photosystem I.
Biochemistry. 2007 Mar 27;46(12):3846-55. doi: 10.1021/bi602531k. Epub 2007 Feb 28.
10
Photosystem I light-harvesting complex Lhca4 adopts multiple conformations: Red forms and excited-state quenching are mutually exclusive.
Biochim Biophys Acta. 2010 Apr;1797(4):501-8. doi: 10.1016/j.bbabio.2010.01.015. Epub 2010 Jan 25.

引用本文的文献

1
Frequently asked questions about chlorophyll fluorescence, the sequel.
Photosynth Res. 2017 Apr;132(1):13-66. doi: 10.1007/s11120-016-0318-y. Epub 2016 Nov 4.
2
PSI-LHCI of Chlamydomonas reinhardtii: Increasing the absorption cross section without losing efficiency.
Biochim Biophys Acta. 2015 Apr-May;1847(4-5):458-467. doi: 10.1016/j.bbabio.2015.02.001. Epub 2015 Feb 10.
3
Light-harvesting in photosystem I.
Photosynth Res. 2013 Oct;116(2-3):153-66. doi: 10.1007/s11120-013-9838-x. Epub 2013 May 4.
4
Conformational switching explains the intrinsic multifunctionality of plant light-harvesting complexes.
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13516-21. doi: 10.1073/pnas.1105411108. Epub 2011 Aug 1.
5
The role of the individual Lhcas in photosystem I excitation energy trapping.
Biophys J. 2011 Aug 3;101(3):745-54. doi: 10.1016/j.bpj.2011.06.045.
6
Excitation-energy transfer dynamics of higher plant photosystem I light-harvesting complexes.
Biophys J. 2011 Mar 2;100(5):1372-80. doi: 10.1016/j.bpj.2011.01.030.
7
Molecular factors controlling photosynthetic light harvesting by carotenoids.
Acc Chem Res. 2010 Aug 17;43(8):1125-34. doi: 10.1021/ar100030m.
8
Ultrafast carotenoid-to-chlorophyll singlet energy transfer in the cytochrome b6f complex from Bryopsis corticulans.
Biophys J. 2006 Jun 1;90(11):4145-54. doi: 10.1529/biophysj.105.076612. Epub 2006 Mar 24.

本文引用的文献

1
Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis.
Photosynth Res. 1994 Sep;41(3):389-95. doi: 10.1007/BF02183041.
3
Global and target analysis of time-resolved spectra.
Biochim Biophys Acta. 2004 Jul 9;1657(2-3):82-104. doi: 10.1016/j.bbabio.2004.04.011.
5
Crystal structure of spinach major light-harvesting complex at 2.72 A resolution.
Nature. 2004 Mar 18;428(6980):287-92. doi: 10.1038/nature02373.
6
Crystal structure of plant photosystem I.
Nature. 2003 Dec 11;426(6967):630-5. doi: 10.1038/nature02200.
7
The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I.
J Biol Chem. 2003 Dec 5;278(49):49223-9. doi: 10.1074/jbc.M309203200. Epub 2003 Sep 22.
8
Photophysical properties of xanthophylls in carotenoproteins from human retinas.
Photochem Photobiol. 2003 Aug;78(2):138-45. doi: 10.1562/0031-8655(2003)078<0138:ppoxic>2.0.co;2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验