Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
J Am Chem Soc. 2024 Feb 7;146(5):3508-3520. doi: 10.1021/jacs.3c13373. Epub 2024 Jan 29.
Plants are designed to utilize visible light for photosynthesis. Expanding this light absorption toward the far-red could boost growth in low-light conditions and potentially increase crop productivity in dense canopies. A promising strategy is broadening the absorption of antenna complexes to the far-red. In this study, we investigated the capacity of the photosystem I antenna protein Lhca4 to incorporate far-red absorbing chlorophylls and and optimize their spectra. We demonstrate that these pigments can successfully bind to Lhca4, with the protein environment further red-shifting the chlorophyll absorption, markedly extending the absorption range of this complex above 750 nm. Notably, chlorophyll substitutes the canonical chlorophyll red-forms, resulting in the most red-shifted emission observed in a plant light-harvesting complex. Using ultrafast spectroscopy, we show that the introduction of these novel chlorophylls does not interfere with the excited state decay or the energy equilibration processes within the complex. The results demonstrate the feasibility of engineering plant antennae to absorb deeper into the far-red region while preserving their functional and structural integrity, paving the way for innovative strategies to enhance photosynthesis.
植物被设计用于利用可见光进行光合作用。将这种光吸收扩展到远红端可以在低光照条件下促进生长,并有可能增加密集冠层中作物的生产力。一种很有前途的策略是拓宽天线复合物对远红端的吸收。在这项研究中,我们研究了光系统 I 天线蛋白 Lhca4 结合远红端吸收叶绿素和并优化其光谱的能力。我们证明这些色素可以成功地与 Lhca4 结合,并且蛋白质环境进一步将叶绿素的吸收红移,使该复合物的吸收范围显著扩展到 750nm 以上。值得注意的是,叶绿素取代了典型的叶绿素红形式,导致在植物光捕获复合物中观察到的最红移的发射。使用超快光谱学,我们表明,引入这些新型叶绿素不会干扰复合物内的激发态衰减或能量平衡过程。这些结果表明,对植物天线进行工程设计以吸收更深的远红区域,同时保持其功能和结构完整性是可行的,为增强光合作用的创新策略铺平了道路。