Wu Zai-Sheng, Zheng Fan, Shen Guo-Li, Yu Ru-Qin
Hunan University, Changsha, PR China.
Biomaterials. 2009 May;30(15):2950-5. doi: 10.1016/j.biomaterials.2009.02.017. Epub 2009 Feb 28.
An aptamer-based electrochemical sensing platform for the direct protein detection has been developed using IgE and a specifically designed aptamer with hairpin structure as the model analyte and probe sequence, respectively. In the absence of IgE, the aptamer immobilized on an electrode surface forms a large hairpin due to the hybridization of the two complementary arm sequences, and peak currents of redox species dissolved in solution can be achieved. However, the target protein binding can not only cause the increase of the dielectric layer but also trigger the significant conformational switching of the aptamer due to the opening of the designed hairpin structure that pushes the biomolecule layer/electrolyte interface away from the electrode surface, suppressing substantially the electron transfer (eT) and resulting in a strong detection signal. The detection limit of 3.6x10(-11)M and linear response range of 5.4x10(-11) to 3.6x10(-8)M are achieved without any amplifier. The selectivity is confirmed by interference test. More importantly, an innovative concept of adapting intelligently a surface-confined aptamer sequence is introduced, and the limitations of the conventional electrochemical aptasensors have been overcome. The proposed sensing scheme is expected to become a promising strategy for the detection of proteins and other biomacromolecules.
一种基于适配体的直接蛋白质检测电化学传感平台已被开发出来,该平台分别使用免疫球蛋白E(IgE)和一种具有发夹结构的特殊设计适配体作为模型分析物和探针序列。在没有IgE的情况下,固定在电极表面的适配体由于两个互补臂序列的杂交而形成一个大的发夹结构,溶解在溶液中的氧化还原物质的峰值电流可以实现。然而,目标蛋白质的结合不仅会导致介电层的增加,还会由于设计的发夹结构的打开而触发适配体的显著构象转换,这会将生物分子层/电解质界面推离电极表面,从而大大抑制电子转移(eT)并产生强烈的检测信号。在没有任何放大器的情况下,实现了3.6×10⁻¹¹ M的检测限和5.4×10⁻¹¹至3.6×10⁻⁸ M的线性响应范围。通过干扰测试证实了其选择性。更重要的是,引入了一种智能适配表面受限适配体序列的创新概念,克服了传统电化学适配体传感器的局限性。所提出的传感方案有望成为检测蛋白质和其他生物大分子的一种有前景的策略。