Kremheller Johannes, Vuong Anh-Tu, Yoshihara Lena, Wall Wolfgang A, Schrefler Bernhard A
Institute for Computational Mechanics, Technische Universität München, Boltzmannstrasse 15, D-85748 Garching b. München, Germany.
Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2a, D-85748 Garching b. München, Germany.
Comput Methods Appl Mech Eng. 2018 Oct 1;340:657-683. doi: 10.1016/j.cma.2018.06.009. Epub 2018 Jun 22.
We present a dynamic vascular tumor model combining a multiphase porous medium framework for avascular tumor growth in a consistent Arbitrary Lagrangian Eulerian formulation and a novel approach to incorporate angiogenesis. The multiphase model is based on Thermodynamically Constrained Averaging Theory and comprises the extracellular matrix as a porous solid phase and three fluid phases: (living and necrotic) tumor cells, host cells and the interstitial fluid. Angiogenesis is modeled by treating the neovasculature as a proper additional phase with volume fraction or blood vessel density. This allows us to define consistent inter-phase exchange terms between the neovasculature and the interstitial fluid. As a consequence, transcapillary leakage and lymphatic drainage can be modeled. By including these important processes we are able to reproduce the increased interstitial pressure in tumors which is a crucial factor in drug delivery and, thus, therapeutic outcome. Different coupling schemes to solve the resulting five-phase problem are realized and compared with respect to robustness and computational efficiency. We find that a fully monolithic approach is superior to both the standard partitioned and a hybrid monolithic-partitioned scheme for a wide range of parameters. The flexible implementation of the novel model makes further extensions (e.g., inclusion of additional phases and species) straightforward.
我们提出了一种动态血管肿瘤模型,该模型将用于无血管肿瘤生长的多相多孔介质框架与一种纳入血管生成的新方法相结合,采用一致的任意拉格朗日欧拉公式。多相模型基于热力学约束平均理论,包括作为多孔固相的细胞外基质和三种流体相:(活的和坏死的)肿瘤细胞、宿主细胞和间质液。通过将新生血管视为具有体积分数或血管密度的适当附加相来模拟血管生成。这使我们能够定义新生血管与间质液之间一致的相间交换项。因此,可以模拟跨毛细血管渗漏和淋巴引流。通过纳入这些重要过程,我们能够再现肿瘤中增加的间质压力,这是药物递送以及治疗结果的关键因素。实现了不同的耦合方案来解决由此产生的五相问题,并在稳健性和计算效率方面进行了比较。我们发现,对于广泛的参数范围,完全整体式方法优于标准分区式和混合整体 - 分区式方案。新模型的灵活实现使得进一步扩展(例如,纳入其他相和物质)变得简单直接。