Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium.
PLoS Negl Trop Dis. 2009;3(3):e388. doi: 10.1371/journal.pntd.0000388. Epub 2009 Mar 3.
Lassa fever is caused by a viral haemorrhagic arenavirus that affects two to three million people in West Africa, causing a mortality of between 5,000 and 10,000 each year. The natural reservoir of Lassa virus is the multi-mammate rat Mastomys natalensis, which lives in houses and surrounding fields. With the aim of gaining more information to control this disease, we here carry out a spatial analysis of Lassa fever data from human cases and infected rodent hosts covering the period 1965-2007. Information on contemporary environmental conditions (temperature, rainfall, vegetation) was derived from NASA Terra MODIS satellite sensor data and other sources and for elevation from the GTOPO30 surface for the region from Senegal to the Congo. All multi-temporal data were analysed using temporal Fourier techniques to generate images of means, amplitudes and phases which were used as the predictor variables in the models. In addition, meteorological rainfall data collected between 1951 and 1989 were used to generate a synoptic rainfall surface for the same region.
METHODOLOGY/PRINCIPAL FINDINGS: Three different analyses (models) are presented, one superimposing Lassa fever outbreaks on the mean rainfall surface (Model 1) and the other two using non-linear discriminant analytical techniques. Model 2 selected variables in a step-wise inclusive fashion, and Model 3 used an information-theoretic approach in which many different random combinations of 10 variables were fitted to the Lassa fever data. Three combinations of absenceratiopresence clusters were used in each of Models 2 and 3, the 2 absenceratio1 presence cluster combination giving what appeared to be the best result. Model 1 showed that the recorded outbreaks of Lassa fever in human populations occurred in zones receiving between 1,500 and 3,000 mm rainfall annually. Rainfall, and to a much lesser extent temperature variables, were most strongly selected in both Models 2 and 3, and neither vegetation nor altitude seemed particularly important. Both Models 2 and 3 produced mean kappa values in excess of 0.91 (Model 2) or 0.86 (Model 3), making them 'Excellent'.
CONCLUSION/SIGNIFICANCE: The Lassa fever areas predicted by the models cover approximately 80% of each of Sierra Leone and Liberia, 50% of Guinea, 40% of Nigeria, 30% of each of Côte d'Ivoire, Togo and Benin, and 10% of Ghana.
拉沙热是由一种病毒性出血性沙粒病毒引起的,每年在西非影响两到三百万人口,死亡率在 5000 到 10000 人之间。拉沙病毒的自然宿主是多乳鼠 Mastomys natalensis,它生活在房屋和周围的田地中。为了获得更多控制这种疾病的信息,我们对 1965 年至 2007 年期间人类病例和感染啮齿动物宿主的拉沙热数据进行了空间分析。当代环境条件(温度、降雨量、植被)的信息来自美国宇航局 Terra MODIS 卫星传感器数据和其他来源,海拔高度则来自该地区的 GTOPO30 表面。所有多时相数据都使用时间傅立叶技术进行分析,生成均值、振幅和相位的图像,这些图像被用作模型中的预测变量。此外,还使用 1951 年至 1989 年收集的气象降雨数据为同一地区生成了综合降雨表面。
方法/主要发现:呈现了三种不同的分析(模型),一种将拉沙热疫情叠加在平均降雨表面上(模型 1),另两种则使用非线性判别分析技术。模型 2以逐步包容的方式选择变量,模型 3则采用信息论方法,对 10 个变量的许多不同随机组合进行拟合。在模型 2 和模型 3 中,每种都使用了三个缺席-存在比的聚类组合,其中缺席-存在比 2 的聚类组合给出了似乎是最好的结果。模型 1 表明,在人类群体中记录的拉沙热疫情发生在每年接收 1500 至 3000 毫米降雨的区域。在模型 2 和模型 3 中,降雨变量以及在较小程度上的温度变量被强烈选择,而植被和海拔似乎并不特别重要。模型 2 和模型 3 都产生了超过 0.91(模型 2)或 0.86(模型 3)的平均kappa 值,使其成为“优秀”。
结论/意义:模型预测的拉沙热区域覆盖了塞拉利昂和利比里亚的约 80%、几内亚的 50%、尼日利亚的 40%、科特迪瓦、多哥和贝宁的各 30%以及加纳的 10%。