Suppr超能文献

基于构象集合的框架能够快速开发拉沙病毒候选疫苗。

Conformational ensemble-based framework enables rapid development of Lassa virus vaccine candidates.

作者信息

Mishra Nitesh, Avillion Gabriel, Callaghan Sean, DiBiase Charlotte, Hurtado Jonathan, Liendo Nathan, Burbach Sarah, Messmer Terrence, Briney Bryan

机构信息

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA.

Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037 USA.

出版信息

bioRxiv. 2024 Nov 22:2024.11.21.624760. doi: 10.1101/2024.11.21.624760.

Abstract

Lassa virus (LASV), an arenavirus endemic to West Africa, poses a significant public health threat due to its high pathogenicity and expanding geographic risk zone. LASV glycoprotein complex (GPC) is the only known target of neutralizing antibodies, but its inherent metastability and conformational flexibility have hindered the development of GPC-based vaccines. We employed a variant of AlphaFold2 (AF2), called subsampled AF2, to generate diverse structures of LASV GPC that capture an array of potential conformational states using MSA subsampling and dropout layers. Conformational ensembles identified several metamorphic domains-areas of significant conformational flexibility-that could be targeted to stabilize the GPC in its immunogenic prefusion state. ProteinMPNN was then used to redesign GPC sequences to minimize the mobility of metamorphic domains. These redesigned sequences were further filtered using subsampled AF2, leading to the identification of promising GPC variants for further testing. A small library of redesigned GPC sequences was experimentally validated and showed significantly increased protein yields compared to controls. Antigenic profiles indicated these variants preserved essential epitopes for effective immune response, suggesting their potential for broad protective efficacy. Our results demonstrate that AI-driven approaches can predict the conformational landscape of complex pathogens. This knowledge can be used to stabilize viral proteins, such as LASV GPC, in their prefusion conformation, optimizing them for stability and expression, and offering a streamlined framework for vaccine design. Our deep learning / machine learning enabled framework contributes to global efforts to combat LASV and has broader implications for vaccine design and pandemic preparedness.

摘要

拉沙病毒(LASV)是一种西非特有的沙粒病毒,因其高致病性和不断扩大的地理风险区域而对公共卫生构成重大威胁。拉沙病毒糖蛋白复合体(GPC)是已知唯一的中和抗体靶点,但其固有的亚稳定性和构象灵活性阻碍了基于GPC的疫苗开发。我们采用了AlphaFold2(AF2)的一个变体,称为子采样AF2,通过MSA子采样和随机失活层生成拉沙病毒GPC的多种结构,捕捉一系列潜在的构象状态。构象集合确定了几个变质结构域——具有显著构象灵活性的区域——可以针对这些区域将GPC稳定在其免疫原性预融合状态。然后使用ProteinMPNN重新设计GPC序列,以尽量减少变质结构域的流动性。这些重新设计的序列进一步使用子采样AF2进行筛选,从而确定有前景的GPC变体进行进一步测试。一个小型的重新设计的GPC序列文库经过实验验证,与对照相比,蛋白质产量显著提高。抗原谱表明这些变体保留了有效免疫反应所需的关键表位,表明它们具有广泛的保护效力潜力。我们的结果表明,人工智能驱动的方法可以预测复杂病原体的构象景观。这些知识可用于将病毒蛋白(如拉沙病毒GPC)稳定在其预融合构象,优化其稳定性和表达,并为疫苗设计提供一个简化的框架。我们的深度学习/机器学习框架有助于全球抗击拉沙病毒的努力,并对疫苗设计和大流行防范具有更广泛的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8069/11601624/a9f869b78c76/nihpp-2024.11.21.624760v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验