Suppr超能文献

检测伪装的疼痛相关功能障碍:波特兰数字识别测试的分类准确性。

Detecting malingered pain-related disability: classification accuracy of the Portland Digit Recognition Test.

作者信息

Greve Kevin W, Bianchini Kevin J, Etherton Joseph L, Ord Jonathan S, Curtis Kelly L

机构信息

Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA.

出版信息

Clin Neuropsychol. 2009 Jul;23(5):850-69. doi: 10.1080/13854040802585055. Epub 2009 Mar 2.

Abstract

This study used criterion groups validation to determine the classification accuracy of the Portland Digit Recognition Test (PDRT) at a range of cutting scores in chronic pain patients undergoing psychological evaluation (n = 318), college student simulators (n = 29), and patients with brain damage (n = 120). PDRT scores decreased and failure rates increased as a function of greater independent evidence of intentional underperformance. There were no differences between patients classified as malingering and college student simulators. The PDRT detected from 33% to nearly 60% of malingering chronic pain patients, depending on the cutoff used. False positive error rates ranged from 3% to 6%. Scores higher than the original cutoffs may be interpreted as indicating negative response bias in patients with pain, increasing the usefulness and facilitating the clinical application of the PDRT in the detection of malingering in pain.

摘要

本研究采用标准组验证法,以确定波特兰数字识别测试(PDRT)在一系列划界分数下对接受心理评估的慢性疼痛患者(n = 318)、大学生模拟者(n = 29)和脑损伤患者(n = 120)的分类准确性。随着故意表现不佳的独立证据增多,PDRT分数降低,失败率升高。被归类为诈病的患者与大学生模拟者之间没有差异。根据所使用的临界值,PDRT能检测出33%至近60%的诈病慢性疼痛患者。假阳性错误率在3%至6%之间。高于原始临界值的分数可能被解释为表明疼痛患者存在负性反应偏差,这增加了PDRT在检测疼痛诈病方面的有用性并便于其临床应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验