Suppr超能文献

预测肽段碎片离子的强度等级。

Predicting intensity ranks of peptide fragment ions.

作者信息

Frank Ari M

机构信息

Department of Computer Science and Engineering, University of California, San Diego (UCSD), 9500 Gilman Drive, La Jolla, California 92093-0404, USA.

出版信息

J Proteome Res. 2009 May;8(5):2226-40. doi: 10.1021/pr800677f.

Abstract

Accurate modeling of peptide fragmentation is necessary for the development of robust scoring functions for peptide-spectrum matches, which are the cornerstone of MS/MS-based identification algorithms. Unfortunately, peptide fragmentation is a complex process that can involve several competing chemical pathways, which makes it difficult to develop generative probabilistic models that describe it accurately. However, the vast amounts of MS/MS data being generated now make it possible to use data-driven machine learning methods to develop discriminative ranking-based models that predict the intensity ranks of a peptide's fragment ions. We use simple sequence-based features that get combined by a boosting algorithm into models that make peak rank predictions with high accuracy. In an accompanying manuscript, we demonstrate how these prediction models are used to significantly improve the performance of peptide identification algorithms. The models can also be useful in the design of optimal multiple reaction monitoring (MRM) transitions, in cases where there is insufficient experimental data to guide the peak selection process. The prediction algorithm can also be run independently through PepNovo+, which is available for download from http://bix.ucsd.edu/Software/PepNovo.html.

摘要

对于肽段-质谱匹配的稳健评分函数的开发而言,肽段碎裂的精确建模是必要的,而肽段-质谱匹配是基于二级质谱的鉴定算法的基石。不幸的是,肽段碎裂是一个复杂的过程,可能涉及多种相互竞争的化学途径,这使得开发能够准确描述它的生成概率模型变得困难。然而,目前产生的大量二级质谱数据使得使用数据驱动的机器学习方法来开发基于判别式排序的模型成为可能,这些模型可以预测肽段碎片离子的强度排名。我们使用基于简单序列的特征,通过一种提升算法将这些特征组合成能够高精度预测峰排名的模型。在一篇配套论文中,我们展示了如何使用这些预测模型来显著提高肽段鉴定算法的性能。在没有足够的实验数据来指导峰选择过程的情况下,这些模型在优化多反应监测(MRM)跃迁的设计中也可能有用。预测算法也可以通过PepNovo+独立运行,PepNovo+可从http://bix.ucsd.edu/Software/PepNovo.html下载。

相似文献

1
3
MS2PIP: a tool for MS/MS peak intensity prediction.MS2PIP:用于 MS/MS 峰强度预测的工具。
Bioinformatics. 2013 Dec 15;29(24):3199-203. doi: 10.1093/bioinformatics/btt544. Epub 2013 Sep 27.

引用本文的文献

5
Peptidomics and Capillary Electrophoresis.肽组学与毛细管电泳。
Adv Exp Med Biol. 2021;1336:87-104. doi: 10.1007/978-3-030-77252-9_5.
9
Deep Learning in Proteomics.蛋白质组学中的深度学习。
Proteomics. 2020 Nov;20(21-22):e1900335. doi: 10.1002/pmic.201900335. Epub 2020 Oct 30.

本文引用的文献

6
Peptide fragment intensity statistical modeling.
Anal Chem. 2007 Oct 1;79(19):7286-90. doi: 10.1021/ac070488n. Epub 2007 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验