Institute for Systems Biology, Seattle, Washington 98109, United States.
Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States.
J Proteome Res. 2021 Apr 2;20(4):1951-1965. doi: 10.1021/acs.jproteome.0c00964. Epub 2021 Mar 17.
Library searching is a powerful technique for detecting peptides using either data independent or data dependent acquisition. While both large-scale spectrum library curators and deep learning prediction approaches have focused on beam-type CID fragmentation (HCD), resonance CID fragmentation remains a popular technique. Here we demonstrate an approach to model the differences between HCD and CID spectra, and present a software tool, CIDer, for converting libraries between the two fragmentation methods. We demonstrate that just using a combination of simple linear models and basic principles of peptide fragmentation, we can explain up to 43% of the variation between ions fragmented by HCD and CID across an array of collision energy settings. We further show that in some circumstances, searching converted CID libraries can detect more peptides than searching existing CID libraries or libraries of machine learning predictions from FASTA databases. These results suggest that leveraging information in existing libraries by converting between HCD and CID libraries may be an effective interim solution while large-scale CID libraries are being developed.
库检索是一种使用数据独立或数据依赖采集来检测肽的强大技术。虽然大型谱库编纂者和深度学习预测方法都集中在束型 CID 碎裂(HCD)上,但共振 CID 碎裂仍然是一种流行的技术。在这里,我们展示了一种模拟 HCD 和 CID 光谱之间差异的方法,并提出了一个软件工具 CIDer,用于在两种碎裂方法之间转换库。我们证明,仅使用简单线性模型的组合和肽碎裂的基本原理,我们就可以解释在一系列碰撞能量设置下由 HCD 和 CID 碎裂的离子之间高达 43%的变化。我们进一步表明,在某些情况下,搜索转换后的 CID 库可以检测到比搜索现有 CID 库或从 FASTA 数据库的机器学习预测中搜索库更多的肽。这些结果表明,在大规模 CID 库开发的同时,通过在 HCD 和 CID 库之间转换来利用现有库中的信息可能是一种有效的临时解决方案。