Mamone S, Ge Min, Hüvonen D, Nagel U, Danquigny A, Cuda F, Grossel M C, Murata Y, Komatsu K, Levitt M H, Rõõm T, Carravetta M
School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom.
J Chem Phys. 2009 Feb 28;130(8):081103. doi: 10.1063/1.3080163.
We report the observation of quantized translational and rotational motion of molecular hydrogen inside the cages of C(60). Narrow infrared absorption lines at the temperature of 6 K correspond to vibrational excitations in combination with translational and rotational excitations and show well-resolved splittings due to the coupling between translational and rotational modes of the endohedral H(2) molecule. A theoretical model shows that H(2) inside C(60) is a three-dimensional quantum rotor moving in a nearly spherical potential. The theory provides both the frequencies and the intensities of the observed infrared transitions. Good agreement with the experimental results is obtained by fitting a small number of empirical parameters to describe the confining potential, as well as the relative concentration of ortho- and para-H(2).
我们报告了在C(60)笼内观察到分子氢的量子化平移和旋转运动。6K温度下的窄红外吸收线对应于与平移和旋转激发相结合的振动激发,并由于笼内H(2)分子的平移和旋转模式之间的耦合而显示出分辨率良好的分裂。一个理论模型表明,C(60)内的H(2)是在近似球形势场中运动的三维量子转子。该理论提供了观察到的红外跃迁的频率和强度。通过拟合少量经验参数来描述限制势以及邻-和对-H(2)的相对浓度,与实验结果取得了良好的一致性。