Gnandt David, Utz Nadine, Blumen Alexander, Koslowski Thorsten
Institut fur Physikalische Chemie, Universitat Freiburg, Albertstrasse 23a, D-79104 Freiburg im Breisgau, Germany.
J Chem Phys. 2009 Feb 28;130(8):085104. doi: 10.1063/1.3077005.
We present a fully atomistic Langevin dynamics approach as a method to simulate biopolymers under external forces. In the harmonic regime, this approach permits the computation of the long-term dynamics using only the eigenvalues and eigenvectors of the Hessian matrix of second derivatives. We apply this scheme to identify polymorphs of model proteins by their mechanical response fingerprint, and we relate the averaged dynamics of proteins to their biological functionality, with the ion channel gramicidin A, a phosphorylase, and neuropeptide Y as examples. In an environment akin to dilute solutions, even small proteins show relaxation times up to 50 ns. Atomically resolved Langevin dynamics computations have been performed for the stretched gramicidin A ion channel.
我们提出一种全原子朗之万动力学方法,作为在外力作用下模拟生物聚合物的一种手段。在简谐区域,该方法仅利用二阶导数海森矩阵的特征值和特征向量就能计算长期动力学。我们应用此方案通过模型蛋白质的力学响应指纹来识别其多晶型,并以离子通道短杆菌肽A、一种磷酸化酶和神经肽Y为例,将蛋白质的平均动力学与其生物学功能联系起来。在类似于稀溶液的环境中,即使是小蛋白质也显示出长达50纳秒的弛豫时间。已对拉伸后的短杆菌肽A离子通道进行了原子分辨率的朗之万动力学计算。