Suppr超能文献

通过两自由度哈密顿系统中的有限李雅普诺夫指数分布实现局部可预测性和非双曲性

Local predictability and nonhyperbolicity through finite Lyapunov exponent distributions in two-degrees-of-freedom Hamiltonian systems.

作者信息

Vallejo Juan C, Viana Ricardo L, Sanjuán Miguel A F

机构信息

Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 2):066204. doi: 10.1103/PhysRevE.78.066204. Epub 2008 Dec 4.

Abstract

By using finite Lyapunov exponent distributions, we get insight into both the local and global properties of a dynamical flow, including its nonhyperbolic behavior. Several distributions of finite Lyapunov exponents have been computed in two prototypical four-dimensional phase-space Hamiltonian systems. They have been computed calculating the growth rates of a set of orthogonal axes arbitrarily pointed at given intervals. We analyze how such distributions serve or not for tracing the orbit nature and local flow properties such as the unstable dimension variability, as the axes are allowed or not to tend to the largest stretching direction. The relationship between the largest and closest to zero exponent distribution is analyzed. It shows a linear dependency at short intervals, related to the number of degrees of freedom of the system. Finally, the hyperbolicity indexes, associated to the shadowing times, are calculated. They provide interesting information at very local scales, even when there are no Gaussian distributions and the values cannot be regarded as random variables.

摘要

通过使用有限李雅普诺夫指数分布,我们深入了解了动态流的局部和全局特性,包括其非双曲行为。在两个典型的四维相空间哈密顿系统中计算了几种有限李雅普诺夫指数分布。它们是通过计算在给定区间内任意指向的一组正交轴的增长率来计算的。我们分析了随着轴是否趋向于最大拉伸方向,这种分布如何用于追踪轨道性质和局部流特性,如不稳定维度变异性。分析了最大指数分布和最接近零的指数分布之间的关系。它在短区间内显示出线性相关性,这与系统的自由度数量有关。最后,计算了与跟踪时间相关的双曲性指数。即使不存在高斯分布且这些值不能被视为随机变量时,它们在非常局部的尺度上也提供了有趣的信息。

相似文献

2
4
Comparison between covariant and orthogonal Lyapunov vectors.协变与正交李雅普诺夫向量之间的比较。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 2):046204. doi: 10.1103/PhysRevE.82.046204. Epub 2010 Oct 5.
5
Unstable dimension variability and synchronization of chaotic systems.混沌系统的不稳定维度变异性与同步性。
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jul;62(1 Pt A):462-8. doi: 10.1103/physreve.62.462.
6
Lyapunov spectrum of the many-dimensional dilute random Lorentz gas.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Sep;70(3 Pt 2):036209. doi: 10.1103/PhysRevE.70.036209. Epub 2004 Sep 23.
7
Finite-space Lyapunov exponents and pseudochaos.有限空间李雅普诺夫指数与伪混沌
Phys Rev Lett. 2004 Dec 3;93(23):234101. doi: 10.1103/PhysRevLett.93.234101. Epub 2004 Dec 1.
8
Violation of hyperbolicity in a diffusive medium with local hyperbolic attractor.具有局部双曲吸引子的扩散介质中双曲性的违反。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 2):016205. doi: 10.1103/PhysRevE.80.016205. Epub 2009 Jul 8.
9
Chaotic bursting at the onset of unstable dimension variability.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 2):046213. doi: 10.1103/PhysRevE.66.046213. Epub 2002 Oct 21.
10
Geometric approach to Lyapunov analysis in Hamiltonian dynamics.哈密顿动力学中李雅普诺夫分析的几何方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Dec;64(6 Pt 2):066206. doi: 10.1103/PhysRevE.64.066206. Epub 2001 Nov 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验