Suppr超能文献

渗流问题中的分布函数。

Distribution functions in percolation problems.

作者信息

Janssen Hans-Karl, Stenull Olaf

机构信息

Institut für Theoretische Physik III, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 1):011128. doi: 10.1103/PhysRevE.79.011128. Epub 2009 Jan 30.

Abstract

Percolation clusters are random fractals whose geometrical and transport properties can be characterized with the help of probability distribution functions. Using renormalized field theory, we determine the asymptotic form of various such distribution functions in the limits where certain scaling variables become small or large. Our study includes the pair-connection probability, the distributions of the fractal masses of the backbone, the red bonds, and the shortest, the longest, and the average self-avoiding walk between any two points on a cluster, as well as the distribution of the total resistance in the random resistor network. Our analysis draws solely on general, structural features of the underlying diagrammatic perturbation theory, and hence our main results are valid to arbitrary loop order.

摘要

渗流簇是随机分形,其几何和输运性质可借助概率分布函数来表征。利用重整化场论,我们在某些标度变量变得很小或很大的极限情况下,确定了各种此类分布函数的渐近形式。我们的研究包括对连通概率、骨架、红色键以及簇上任意两点之间最短、最长和平均自回避行走的分形质量分布,以及随机电阻网络中的总电阻分布。我们的分析仅基于基础图形微扰理论的一般结构特征,因此我们的主要结果对任意圈阶都是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验