Suppr超能文献

无序介质中的线性聚合物:渗流团簇上的最短、最长及平均自回避行走。

Linear polymers in disordered media: the shortest, the longest, and the mean self-avoiding walk on percolation clusters.

作者信息

Janssen Hans-Karl, Stenull Olaf

机构信息

Institut für Theoretische Physik III, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 1):011123. doi: 10.1103/PhysRevE.85.011123. Epub 2012 Jan 13.

Abstract

Long linear polymers in strongly disordered media are well described by self-avoiding walks (SAWs) on percolation clusters and a lot can be learned about the statistics of these polymers by studying the length distribution of SAWs on percolation clusters. This distribution encompasses 2 distinct averages, viz., the average over the conformations of the underlying cluster and the SAW conformations. For the latter average, there are two basic options, one being static and one being kinetic. It is well known for static averaging that if the disorder of the underlying medium is weak, this disorder is redundant in the sense the renormalization group; i.e., differences to the ordered case appear merely in nonuniversal quantities. Using dynamical field theory, we show that the same holds true for kinetic averaging. Our main focus, however, lies on strong disorder, i.e., the medium being close to the percolation point, where disorder is relevant. Employing a field theory for the nonlinear random resistor network in conjunction with a real-world interpretation of the corresponding Feynman diagrams, we calculate the scaling exponents for the shortest, the longest, and the mean or average SAW to 2-loop order. In addition, we calculate to 2-loop order the entire family of multifractal exponents that governs the moments of the the statistical weights of the elementary constituents (bonds or sites of the underlying fractal cluster) contributing to the SAWs. Our RG analysis reveals that kinetic averaging leads to renormalizability whereas static averaging does not, and hence, we argue that the latter does not lead to a well-defined scaling limit. We discuss the possible implications of this finding for experiments and numerical simulations which have produced widespread results for the exponent of the average SAW. To corroborate our results, we also study the well-known Meir-Harris model for SAWs on percolation clusters. We demonstrate that the Meir-Harris model leads back up to 2-loop order to the renormalizable real-world formulation with kinetic averaging if the replica limit is consistently performed at the first possible instant in the course of the calculation.

摘要

在强无序介质中的长线性聚合物可以通过渗流团簇上的自回避行走(SAW)很好地描述,并且通过研究渗流团簇上SAW的长度分布,可以了解到这些聚合物的许多统计信息。这种分布包含两个不同的平均值,即基础团簇构象的平均值和SAW构象的平均值。对于后一个平均值,有两个基本选项,一个是静态的,一个是动态的。对于静态平均而言,众所周知,如果基础介质的无序性较弱,那么从重整化群的意义上讲,这种无序是多余的;也就是说,与有序情况的差异仅出现在非普适量中。使用动态场论,我们表明对于动态平均也是如此。然而,我们主要关注的是强无序,即介质接近渗流点,此时无序是相关的。通过将非线性随机电阻网络的场论与相应费曼图的实际解释相结合,我们计算了最短、最长以及平均SAW的标度指数到二级圈阶。此外,我们计算了到二级圈阶的整个多重分形指数族,这些指数控制着对SAW有贡献的基本成分(基础分形团簇的键或位点)的统计权重的矩。我们的重整化群分析表明,动态平均导致可重整化,而静态平均则不然,因此,我们认为后者不会导致定义明确的标度极限。我们讨论了这一发现对实验和数值模拟可能产生的影响,这些实验和数值模拟已经得出了关于平均SAW指数的广泛结果。为了证实我们的结果,我们还研究了渗流团簇上SAW的著名的迈尔 - 哈里斯模型。我们证明,如果在计算过程中在第一个可能的时刻一致地执行复制极限,那么迈尔 - 哈里斯模型在二级圈阶之前会回到具有动态平均的可重整化的实际表述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验