Imamoğlu Atac
Institute of Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland.
Phys Rev Lett. 2009 Feb 27;102(8):083602. doi: 10.1103/PhysRevLett.102.083602.
We analyze the magnetic dipole coupling of an ensemble of spins to a superconducting microwave stripline structure, incorporating a Josephson junction based transmon qubit. We show that this system is described by an embedded Jaynes-Cummings model: in the strong coupling regime, collective spin-wave excitations of the ensemble of spins pick up the nonlinearity of the cavity mode, such that the two lowest eigenstates of the coupled spin wave-microwave cavity-Josephson junction system define a hybrid two-level system. The proposal described here enables new avenues for nonlinear optics using optical photons coupled to spin ensembles via Raman transitions. The possibility of strong coupling cavity QED with magnetic dipole transitions also opens up the possibility of extending quantum information processing protocols to spins in silicon or graphene, without the need for single-spin confinement.
我们分析了一组自旋与包含基于约瑟夫森结的跨导量子比特的超导微波带状线结构之间的磁偶极耦合。我们表明,该系统由一个嵌入式杰恩斯 - 卡明斯模型描述:在强耦合 regime 中,自旋集合的集体自旋波激发获得了腔模的非线性,使得耦合的自旋波 - 微波腔 - 约瑟夫森结系统的两个最低本征态定义了一个混合二能级系统。这里描述的提议为使用通过拉曼跃迁与自旋集合耦合的光学光子的非线性光学开辟了新途径。强耦合腔量子电动力学与磁偶极跃迁的可能性也为将量子信息处理协议扩展到硅或石墨烯中的自旋开辟了可能性,而无需单自旋限制。