Suppr超能文献

Mass data exploration in oncology: an information synthesis approach.

作者信息

Bourbeillon Julie, Garbay Catherine, Giroud Françoise

机构信息

CNRS - Grenoble Universités, UMR 5525, Laboratoire TIMC-IMAG (Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications de Grenoble). F38710 La Tronche, France.

出版信息

J Biomed Inform. 2009 Aug;42(4):612-23. doi: 10.1016/j.jbi.2009.02.007. Epub 2009 Mar 1.

Abstract

New technologies and equipment allow for mass treatment of samples and research teams share acquired data on an always larger scale. In this context scientists are facing a major data exploitation problem. More precisely, using these data sets through data mining tools or introducing them in a classical experimental approach require a preliminary understanding of the information space, in order to direct the process. But acquiring this grasp on the data is a complex activity, which is seldom supported by current software tools. The goal of this paper is to introduce a solution to this scientific data grasp problem. Illustrated in the Tissue MicroArrays application domain, the proposal is based on the synthesis notion, which is inspired by Information Retrieval paradigms. The envisioned synthesis model gives a central role to the study the researcher wants to conduct, through the task notion. It allows for the implementation of a task-oriented Information Retrieval prototype system. Cases studies and user studies were used to validate this prototype system. It opens interesting prospects for the extension of the model or extensions towards other application domains.

摘要

相似文献

1
Mass data exploration in oncology: an information synthesis approach.
J Biomed Inform. 2009 Aug;42(4):612-23. doi: 10.1016/j.jbi.2009.02.007. Epub 2009 Mar 1.
3
Bioinformatics.生物信息学
J Cell Physiol. 2007 Nov;213(2):365-9. doi: 10.1002/jcp.21218.
9
A pitfall of wiki solution for biological databases.生物数据库维基解决方案的一个陷阱。
Brief Bioinform. 2009 May;10(3):295-6. doi: 10.1093/bib/bbn053. Epub 2008 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验