Kierszniowska Sylwia, Walther Dirk, Schulze Waltraud X
Max Planck Institut für Molekulare Pflanzenphysiologie, Golm, Germany.
Proteomics. 2009 Apr;9(7):1916-24. doi: 10.1002/pmic.200800443.
Metabolic labeling of plant tissues with (15)N has become widely used in plant proteomics. Here, we describe a robust experimental design and data analysis workflow implementing two parallel biological replicate experiments with reciprocal labeling and series of 1:1 control mixtures. Thereby, we are able to unambiguously distinguish (i) inherent biological variation between cultures and (ii) specific responses to a biological treatment. The data analysis workflow is based on first determining the variation between cultures based on (15)N/(14)N ratios in independent 1:1 mixtures before biological treatment is applied. In a second step, ratio-dependent SD is used to define p-values for significant deviation of protein ratios in the biological experiment from the distribution of protein ratios in the 1:1 mixture. This approach allows defining those proteins showing significant biological response superimposed on the biological variation before treatment. The proposed workflow was applied to a series of experiments, in which changes in composition of detergent resistant membrane domains was analyzed in response to sucrose resupply after carbon starvation. Especially in experiments involving cell culture treatment (starvation) prior to the actual biological stimulus of interest (resupply), a clear distinction between culture to culture variations and biological response is of utmost importance.
用(^{15}N)对植物组织进行代谢标记已在植物蛋白质组学中广泛应用。在此,我们描述了一种稳健的实验设计和数据分析流程,该流程实施了两个平行的生物重复实验,采用反向标记以及一系列(1:1)的对照混合物。借此,我们能够明确区分(i)不同培养物之间固有的生物学差异以及(ii)对生物处理的特定反应。数据分析流程基于在施加生物处理之前,首先根据独立(1:1)混合物中(^{15}N/^{14}N)的比率来确定不同培养物之间的差异。在第二步中,比率依赖性标准差用于定义生物实验中蛋白质比率相对于(1:1)混合物中蛋白质比率分布的显著偏差的(p)值。这种方法能够确定那些在处理前的生物学差异之上显示出显著生物学反应的蛋白质。所提出的流程应用于一系列实验,其中分析了碳饥饿后蔗糖再供应时耐去污剂膜结构域组成的变化。特别是在涉及在实际感兴趣的生物刺激(再供应)之前进行细胞培养处理(饥饿)的实验中,区分不同培养物之间的差异和生物学反应至关重要。