Suppr超能文献

二亚硝酰基铁配合物与一氧化氮形成细胞蛋白亚硝基硫醇的机制

Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide.

作者信息

Bosworth Charles A, Toledo José C, Zmijewski Jaroslaw W, Li Qian, Lancaster Jack R

机构信息

Department of Physiology and Biophysics, University of Alabama, Birmingham, AL 35205, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4671-6. doi: 10.1073/pnas.0710416106. Epub 2009 Mar 4.

Abstract

Nitrosothiols (RSNO), formed from thiols and metabolites of nitric oxide (*NO), have been implicated in a diverse set of physiological and pathophysiological processes, although the exact mechanisms by which they are formed biologically are unknown. Several candidate nitrosative pathways involve the reaction of *NO with O(2), reactive oxygen species (ROS), and transition metals. We developed a strategy using extracellular ferrocyanide to determine that under our conditions intracellular protein RSNO formation occurs from reaction of *NO inside the cell, as opposed to cellular entry of nitrosative reactants from the extracellular compartment. Using this method we found that in RAW 264.7 cells RSNO formation occurs only at very low (<8 microM) O(2) concentrations and exhibits zero-order dependence on *NO concentration. Indeed, RSNO formation is not inhibited even at O(2) levels <1 microM. Additionally, chelation of intracellular chelatable iron pool (CIP) reduces RSNO formation by >50%. One possible metal-dependent, O(2)-independent nitrosative pathway is the reaction of thiols with dinitrosyliron complexes (DNIC), which are formed in cells from the reaction of *NO with the CIP. Under our conditions, DNIC formation, like RSNO formation, is inhibited by approximately 50% after chelation of labile iron. Both DNIC and RSNO are also increased during overproduction of ROS by the redox cycler 5,8-dimethoxy-1,4-naphthoquinone. Taken together, these data strongly suggest that cellular RSNO are formed from free *NO via transnitrosation from DNIC derived from the CIP. We have examined in detail the kinetics and mechanism of RSNO formation inside cells.

摘要

亚硝基硫醇(RSNO)由硫醇与一氧化氮(NO)的代谢产物形成,虽然其生物形成的确切机制尚不清楚,但已被认为参与了多种生理和病理生理过程。几种候选的亚硝化途径涉及NO与O(2)、活性氧(ROS)和过渡金属的反应。我们开发了一种利用细胞外亚铁氰化物的策略,以确定在我们的条件下,细胞内蛋白质RSNO的形成是由细胞内NO的反应引起的,而不是来自细胞外区室的亚硝化反应物进入细胞。使用这种方法,我们发现,在RAW 264.7细胞中,RSNO的形成仅在非常低(<8 microM)的O(2)浓度下发生,并且对NO浓度呈零级依赖性。实际上,即使在O(2)水平<1 microM时,RSNO的形成也不会受到抑制。此外,细胞内可螯合铁池(CIP)的螯合可使RSNO的形成减少>50%。一种可能的金属依赖性、O(2)非依赖性亚硝化途径是硫醇与二亚硝基铁配合物(DNIC)的反应,DNIC是由NO与CIP在细胞中反应形成的。在我们的条件下,与RSNO的形成一样,不稳定铁螯合后,DNIC的形成被抑制约50%。氧化还原循环剂5,8-二甲氧基-1,4-萘醌使ROS过量产生时,DNIC和RSNO也都会增加。综上所述,这些数据强烈表明,细胞内的RSNO是由游离的NO通过来自CIP的DNIC的亚硝基转移形成的。我们已经详细研究了细胞内RSNO形成的动力学和机制。

相似文献

1
Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4671-6. doi: 10.1073/pnas.0710416106. Epub 2009 Mar 4.
3
Is S-nitrosocysteine a true surrogate for nitric oxide?
Antioxid Redox Signal. 2012 Oct 1;17(7):962-8. doi: 10.1089/ars.2012.4543. Epub 2012 Mar 12.
4
Nitric oxide reduces oxidative stress in cancer cells by forming dinitrosyliron complexes.
Nitric Oxide. 2018 Jun 1;76:37-44. doi: 10.1016/j.niox.2018.03.003. Epub 2018 Mar 6.
5
Dinitrosyliron complexes are the most abundant nitric oxide-derived cellular adduct: biological parameters of assembly and disappearance.
Free Radic Biol Med. 2011 Oct 15;51(8):1558-66. doi: 10.1016/j.freeradbiomed.2011.06.030. Epub 2011 Jul 5.
6
Differential mitochondrial dinitrosyliron complex formation by nitrite and nitric oxide.
Redox Biol. 2018 May;15:277-283. doi: 10.1016/j.redox.2017.12.007. Epub 2017 Dec 23.
7
Nitric oxide-induced conversion of cellular chelatable iron into macromolecule-bound paramagnetic dinitrosyliron complexes.
J Biol Chem. 2008 Oct 24;283(43):28926-33. doi: 10.1074/jbc.M707862200. Epub 2008 May 14.
8
DNIC is a Structure Providing Specificity of Physiological Effects of NO.
Bull Exp Biol Med. 2023 Dec;176(2):160-164. doi: 10.1007/s10517-024-05987-3. Epub 2024 Jan 9.
10
The mechanisms of S-nitrosothiol decomposition catalyzed by iron.
Nitric Oxide. 2004 Mar;10(2):60-73. doi: 10.1016/j.niox.2004.02.005.

引用本文的文献

1
Nitric Oxide restricts iron availability and induces quorum sensing in Streptococcus pyogenes.
Redox Biol. 2025 Jun 4;85:103699. doi: 10.1016/j.redox.2025.103699.
2
The Ever-Expanding Influence of the Endothelial Nitric Oxide Synthase.
Basic Clin Pharmacol Toxicol. 2025 May;136(5):e70029. doi: 10.1111/bcpt.70029.
4
Effects of Nitrosyl Iron Complexes with Thiol, Phosphate, and Thiosulfate Ligands on Hemoglobin.
Int J Mol Sci. 2024 Jun 29;25(13):7194. doi: 10.3390/ijms25137194.
5
The chemical biology of dinitrogen trioxide.
Redox Biochem Chem. 2024 Jun;8. doi: 10.1016/j.rbc.2024.100026. Epub 2024 May 9.
8
Insights on the endogenous labile iron pool binding properties.
Biometals. 2024 Oct;37(5):1065-1077. doi: 10.1007/s10534-024-00591-4. Epub 2024 May 1.
10

本文引用的文献

1
Nitric oxide-induced conversion of cellular chelatable iron into macromolecule-bound paramagnetic dinitrosyliron complexes.
J Biol Chem. 2008 Oct 24;283(43):28926-33. doi: 10.1074/jbc.M707862200. Epub 2008 May 14.
3
Physiological and hypoxic O2 tensions rapidly regulate NO production by stimulated macrophages.
Am J Physiol Cell Physiol. 2008 Apr;294(4):C1079-87. doi: 10.1152/ajpcell.00469.2007. Epub 2008 Feb 13.
5
Acceleration of nitric oxide autoxidation and nitrosation by membranes.
IUBMB Life. 2007 Apr-May;59(4-5):243-8. doi: 10.1080/15216540701311147.
6
Crucial role of lysosomal iron in the formation of dinitrosyl iron complexes in vivo.
J Biol Inorg Chem. 2007 Mar;12(3):345-52. doi: 10.1007/s00775-006-0192-8. Epub 2006 Nov 29.
7
Nitric oxide and mitochondria.
Front Biosci. 2007 Jan 1;12:1024-33. doi: 10.2741/2122.
9
The role of reactive oxygen and nitrogen species in cellular iron metabolism.
Free Radic Res. 2006 Mar;40(3):263-72. doi: 10.1080/10715760500511484.
10
Nitrosylation of human glutathione transferase P1-1 with dinitrosyl diglutathionyl iron complex in vitro and in vivo.
J Biol Chem. 2005 Dec 23;280(51):42172-80. doi: 10.1074/jbc.M507916200. Epub 2005 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验