Suppr超能文献

转化生长因子介导的多耦合肾单位系统中的动力学

TGF-mediated dynamics in a system of many coupled nephrons.

作者信息

Bayram Saziye, Stepien Tracy L, Pitman E Bruce

机构信息

Mathematics Department, State University of New York, Buffalo State College, Buffalo, NY 14222, USA.

出版信息

Bull Math Biol. 2009 Aug;71(6):1482-506. doi: 10.1007/s11538-009-9410-1. Epub 2009 Mar 5.

Abstract

This paper presents a mathematical model of a system of many coupled nephrons branching from a common cortical radial artery, and accompanying analysis of that system. This modeling effort is a first step in understanding how coupling magnifies the tendency of nephrons to oscillate owing to tubuloglomerular feedback. Central to the present work is the single nephron integral model (as in Pitman et al., The IMA Volumes in Mathematics and Its Applications, vol. 129, pp. 345-364, 2002 and in Zaritski, Ph.D. Dissertation, 1999) which is a simplification of the single nephron PDE model of Layton et al. (Am. J. Physiol. 261, F904-F919, 1991). A second principal idea used in the present model is a coupling of model nephrons, generalizing the work of Pitman et al. (Bull. Math. Biol. 66, 1463-1492, 2004) who proposed a model of two coupled nephrons. In this study, we couple nephrons through a nearest neighbor interaction.Speaking generally, our results suggest that a series of similar nephrons coupled to their nearest neighbors are more prone to be found in an oscillatory mode, relative to a single nephron with the same properties. More specifically, we show analytically that, for N coupled identical nephrons, the region supporting oscillatory solutions in the time delay-gain parameter plane increases with N. Numerical simulations suggest that, if N nephrons have gains and time delays that do not differ by much, the system is, again, more prone to oscillate, relative to a single nephron, and the oscillations tend to be approximately synchronous and in-phase. We examine the effect of parameters on bifurcation. We also examine alternative models of coupling; this analysis allows us to conclude that the increased propensity of coupled nephrons to oscillate is a robust finding, true for several models of nephron interaction.

摘要

本文提出了一个由一条共同的皮质放射状动脉分支出来的多个耦合肾单位系统的数学模型,并对该系统进行了相应分析。这种建模工作是理解耦合如何因肾小管 - 肾小球反馈而放大肾单位振荡趋势的第一步。本研究的核心是单肾单位积分模型(如Pitman等人在《IMA数学及其应用卷》第129卷,第345 - 364页,2002年以及Zaritski的博士论文,1999年中所述),它是Layton等人(《美国生理学杂志》261卷,F904 - F919页,1991年)的单肾单位偏微分方程模型的简化。本模型中使用的第二个主要思想是模型肾单位的耦合,推广了Pitman等人(《数学生物学通报》66卷,1463 - 1492页,2004年)提出的两个耦合肾单位的模型。在本研究中,我们通过最近邻相互作用来耦合肾单位。一般来说,我们的结果表明,相对于具有相同特性的单个肾单位,一系列与其最近邻耦合的相似肾单位更倾向于以振荡模式出现。更具体地说,我们通过分析表明,对于N个耦合的相同肾单位,在时间延迟 - 增益参数平面中支持振荡解的区域随N增加。数值模拟表明,如果N个肾单位的增益和时间延迟差异不大,相对于单个肾单位,该系统再次更倾向于振荡,并且振荡往往近似同步且同相。我们研究了参数对分岔的影响。我们还研究了耦合的替代模型;该分析使我们能够得出结论,耦合肾单位振荡倾向的增加是一个稳健的发现,对于几种肾单位相互作用模型都是如此。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验