Suppr超能文献

多肾单位在肾血管网络中的动力学。

Multinephron dynamics on the renal vascular network.

机构信息

Dept. of Molecular Pharmacology, Physiology, and Biotechnology Brown Univ., Providence, RI 02912, USA.

出版信息

Am J Physiol Renal Physiol. 2013 Jan 1;304(1):F88-F102. doi: 10.1152/ajprenal.00237.2012. Epub 2012 Sep 12.

Abstract

Tubuloglomerular feedback (TGF) and the myogenic mechanism combine in each nephron to regulate blood flow and glomerular filtration rate. Both mechanisms are nonlinear, generate self-sustained oscillations, and interact as their signals converge on arteriolar smooth muscle, forming a regulatory ensemble. Ensembles may synchronize. Smooth muscle cells in the ensemble depolarize periodically, generating electrical signals that propagate along the vascular network. We developed a mathematical model of a nephron-vascular network, with 16 versions of a single nephron model containing representations of both mechanisms in the regulatory ensemble, to examine the effects of network structure on nephron synchronization. Symmetry, as a property of a network, facilitates synchronization. Nephrons received blood from a symmetric electrically conductive vascular tree. Symmetry was created by using identical nephron models at each of the 16 sites and symmetry breaking by varying nephron length. The symmetric model achieved synchronization of all elements in the network. As little as 1% variation in nephron length caused extensive desynchronization, although synchronization was maintained in small nephron clusters. In-phase synchronization predominated among nephrons separated by one or three vascular nodes and antiphase synchronization for five or seven nodes of separation. Nephron dynamics were irregular and contained low-frequency fluctuations. Results are consistent with simultaneous blood flow measurements in multiple nephrons. An interaction between electrical signals propagated through the network to cause synchronization; variation in vascular pressure at vessel bifurcations was a principal cause of desynchronization. The results suggest that the vasculature supplies blood to nephrons but also engages in robust information transfer.

摘要

管球反馈 (TGF) 和肌源性机制在每个肾单位中结合,以调节血流量和肾小球滤过率。这两种机制是非线性的,产生自维持的振荡,并相互作用,因为它们的信号在血管平滑肌上收敛,形成一个调节集合。集合可能会同步。集合中的平滑肌细胞周期性去极化,产生电信号,沿血管网络传播。我们开发了一个肾单位-血管网络的数学模型,其中包含 16 个单一肾单位模型的版本,这些模型包含调节集合中这两种机制的表示,以研究网络结构对肾单位同步的影响。对称性作为网络的一个属性,促进了同步。肾单位从对称的导电血管树中获得血液。通过在 16 个位置中的每个位置使用相同的肾单位模型并通过改变肾单位长度来打破对称性来创建对称性。对称模型实现了网络中所有元素的同步。即使在小肾单位簇中保持同步,长度变化小至 1%也会导致广泛的失步。在通过一个或三个血管节点分离的肾单位中,同相同步占主导地位,而在分离五个或七个节点时,反相同步占主导地位。肾单位动力学是不规则的,包含低频波动。结果与同时测量多个肾单位的血流一致。通过网络传播的电信号之间的相互作用导致同步;血管分叉处的血管压力变化是失步的主要原因。结果表明,血管不仅为肾单位提供血液,还进行稳健的信息传递。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验