Department of Molecular Pharmacology, Brown University, Biomedical Center B-3, Providence, RI 02912, USA.
Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R997-R1006. doi: 10.1152/ajpregu.00714.2009. Epub 2010 Feb 10.
Tubular pressure and nephron blood flow time series display two interacting oscillations in rats with normal blood pressure. Tubuloglomerular feedback (TGF) senses NaCl concentration in tubular fluid at the macula densa, adjusts vascular resistance of the nephron's afferent arteriole, and generates the slower, larger-amplitude oscillations (0.02-0.04 Hz). The faster smaller oscillations (0.1-0.2 Hz) result from spontaneous contractions of vascular smooth muscle triggered by cyclic variations in membrane electrical potential. The two mechanisms interact in each nephron and combine to act as a high-pass filter, adjusting diameter of the afferent arteriole to limit changes of glomerular pressure caused by fluctuations of blood pressure. The oscillations become irregular in animals with chronic high blood pressure. TGF feedback gain is increased in hypertensive rats, leading to a stronger interaction between the two mechanisms. With a mathematical model that simulates tubular and arteriolar dynamics, we tested whether an increase in the interaction between TGF and the myogenic mechanism can cause the transition from periodic to irregular dynamics. A one-dimensional bifurcation analysis, using the coefficient that couples TGF and the myogenic mechanism as a bifurcation parameter, shows some regions with chaotic dynamics. With two nephrons coupled electrotonically, the chaotic regions become larger. The results support the hypothesis that increased oscillator interactions contribute to the transition to irregular fluctuations, especially when neighboring nephrons are coupled, which is the case in vivo.
在血压正常的大鼠中,管状压力和肾单位血流时间序列显示出两种相互作用的振荡。管-球反馈(TGF)在致密斑处感应管状液中的 NaCl 浓度,调节肾单位入球小动脉的血管阻力,并产生较慢、幅度较大的振荡(0.02-0.04 Hz)。较快、幅度较小的振荡(0.1-0.2 Hz)则是由膜电势能的周期性变化触发的血管平滑肌自发性收缩引起的。这两种机制在每个肾单位中相互作用,并结合起来作为高通滤波器,调节入球小动脉的直径,以限制血压波动引起的肾小球压力变化。在患有慢性高血压的动物中,这些振荡变得不规则。TGF 反馈增益在高血压大鼠中增加,导致两种机制之间的相互作用增强。我们使用模拟管状和小动脉动力学的数学模型,测试了 TGF 和肌源性机制之间相互作用的增加是否会导致从周期性到不规则动力学的转变。使用将 TGF 和肌源性机制耦合的系数作为分岔参数的一维分岔分析表明,存在一些混沌动力学区域。当两个肾单位电耦合时,混沌区域会变大。这些结果支持了这样一种假设,即振荡器相互作用的增加有助于向不规则波动的转变,尤其是当相邻的肾单位被耦合时,这种情况在体内发生。