用于体内肿瘤靶向的磁性纳米蠕虫的系统表面工程。

Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting.

作者信息

Park Ji-Ho, von Maltzahn Geoffrey, Zhang Lianglin, Derfus Austin M, Simberg Dmitri, Harris Todd J, Ruoslahti Erkki, Bhatia Sangeeta N, Sailor Michael J

机构信息

Materials Science and Engineering Program Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman, La Jolla, CA 92093, USA.

出版信息

Small. 2009 Mar;5(6):694-700. doi: 10.1002/smll.200801789.

Abstract

In the design of nanoparticles that can target disease tissue in vivo, parameters such as targeting ligand density, type of target receptor, and nanoparticle shape can play an important role in determining the extent of accumulation. Herein, a systematic study of these parameters for the targeting of mouse xenograft tumors is performed using superparamagnetic iron oxide as a model nanoparticle system. The type of targeting peptide (recognizing cell surface versus extracellular matrix), the surface coverage of the peptide, its attachment chemistry, and the shape of the nanomaterial [elongated (nanoworm, NW) versus spherical (nanosphere, NS)] are varied. Nanoparticle circulation times and in vivo tumor-targeting efficiencies are quantified in two xenograft models of human tumors (MDA-MB-435 human carcinoma and HT1080 human fibrosarcoma). It is found that the in vivo tumor-targeting ability of the NW is superior to that of the NS, that the smaller, neutral CREKA targeting group is more effective than the larger, positively charged F3 molecule, that a maximum in tumor-targeting efficiency and blood half-life is observed with approximately 60 CREKA peptides per NW for either the HT1080 or the MDA-MB-435 tumor types, and that incorporation of a 5-kDa polyethylene glycol linker improves targeting to both tumor types relative to a short linker. It is concluded that the blood half-life of a targeting molecule-nanomaterial ensemble is a key consideration when selecting the appropriate ligand and nanoparticle chemistry for tumor targeting.

摘要

在设计能够在体内靶向疾病组织的纳米颗粒时,诸如靶向配体密度、靶受体类型和纳米颗粒形状等参数在决定积累程度方面可能发挥重要作用。在此,以超顺磁性氧化铁作为模型纳米颗粒系统,对这些用于靶向小鼠异种移植肿瘤的参数进行了系统研究。改变靶向肽的类型(识别细胞表面与细胞外基质)、肽的表面覆盖率、其连接化学以及纳米材料的形状[细长形(纳米蠕虫,NW)与球形(纳米球,NS)]。在两种人类肿瘤异种移植模型(MDA-MB-435人癌和HT1080人纤维肉瘤)中对纳米颗粒的循环时间和体内肿瘤靶向效率进行了量化。研究发现,NW的体内肿瘤靶向能力优于NS,较小的中性CREKA靶向基团比较大的带正电荷的F3分子更有效,对于HT1080或MDA-MB-435肿瘤类型,每个NW约60个CREKA肽时观察到肿瘤靶向效率和血液半衰期达到最大值,并且相对于短连接子,掺入5-kDa聚乙二醇连接子可改善对两种肿瘤类型的靶向。得出的结论是,在为肿瘤靶向选择合适的配体和纳米颗粒化学时,靶向分子-纳米材料组合的血液半衰期是一个关键考虑因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索