Suppr超能文献

高渗透性纤维素纳米晶体通过植物中依赖于nsLTP2的免疫增强作用介导系统性锌再分配。

High-permeability cellulose nanocrystals mediate systemic zinc redistribution through nsLTP2-dependent immune potentiation in plants.

作者信息

Wang Jing, Xiang Shunyu, Wang Xiaoyan, Shen Yang, Liu Changyun, Zhu Xin, Liu Weina, Wang Shanzhi, Ma Xiaozhou, Huang Jin, Sun Xianchao

机构信息

College of Plant Protection, Southwest University, Chongqing, China.

Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China.

出版信息

Plant Biotechnol J. 2025 Sep;23(9):4175-4190. doi: 10.1111/pbi.70230. Epub 2025 Jun 26.

Abstract

Zinc (Zn) is an essential micronutrient that regulates plant growth, immunity and antiviral defence mechanisms. However, its limited bioavailability often necessitates excessive application, resulting in inefficiencies in production and environmental stress. In response, we propose an environmentally friendly and sustainable approach to enhance the utilization of Zn. We developed CNC@PDA@Zn by embedding Zn into the polydopamine (PDA) coating of cellulose nanocrystals (CNCs). Leveraging the high cell permeability of CNCs, this material increased the transport capacity of Zn in plants and demonstrated the ability to inactivate viral particles in vitro. Moreover, CNC@PDA@Zn showed a superior induction of resistance while reducing Zn content, specifically by reprogramming the expression and localization of the resistance-related non-specific lipid transfer protein 2 (nsLTP2), which enhanced the salicylic acid (SA) signalling pathway in plants. Furthermore, the high conservation of nsLTP2 in flowering plants increases the potential application range of CNC@PDA@Zn. Importantly, CNC@PDA@Zn represents the most effective Zn-based antiviral nanomaterial to date, achieving its effects at the lowest reported Zn concentration. Overall, our results highlight that CNC@PDA@Zn can more effectively upregulate the conserved nsLTP2, thereby inducing viral defence responses via the SA pathway. This strategy not only improves the operation and utilization rate of Zn but also reduces its environmental residues, laying a theoretical foundation for the development of antivirus defence.

摘要

锌(Zn)是一种必需的微量营养素,可调节植物生长、免疫和抗病毒防御机制。然而,其有限的生物有效性常常需要过量施用,导致生产效率低下和环境压力。作为回应,我们提出了一种环境友好且可持续的方法来提高锌的利用率。我们通过将锌嵌入纤维素纳米晶体(CNCs)的聚多巴胺(PDA)涂层中,开发出了CNC@PDA@Zn。利用CNCs的高细胞渗透性,这种材料提高了锌在植物中的运输能力,并证明了其在体外使病毒颗粒失活的能力。此外,CNC@PDA@Zn在降低锌含量的同时表现出卓越的抗性诱导能力,具体而言是通过重新编程抗性相关的非特异性脂质转移蛋白2(nsLTP2)的表达和定位,从而增强了植物中的水杨酸(SA)信号通路。此外,nsLTP2在开花植物中的高度保守性增加了CNC@PDA@Zn的潜在应用范围。重要的是,CNC@PDA@Zn是迄今为止最有效的锌基抗病毒纳米材料,在报道的最低锌浓度下即可实现其效果。总体而言,我们的结果表明,CNC@PDA@Zn可以更有效地上调保守的nsLTP2,从而通过SA途径诱导病毒防御反应。这种策略不仅提高了锌的运作和利用率,还减少了其在环境中的残留,为抗病毒防御的发展奠定了理论基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/12392954/8244ca6583fc/PBI-23-4175-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验