Suppr超能文献

通过面向活性的特征过滤和应用基于位密度的相似性函数来提高扩展连接指纹的搜索性能。

Improving the search performance of extended connectivity fingerprints through activity-oriented feature filtering and application of a bit-density-dependent similarity function.

作者信息

Hu Ye, Lounkine Eugen, Bajorath Jürgen

机构信息

Department of Life Science Informatics, B-IT, LIMES, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany.

出版信息

ChemMedChem. 2009 Apr;4(4):540-8. doi: 10.1002/cmdc.200800408.

Abstract

The Pipeline Pilot extended connectivity fingerprints (ECFPs) are currently among the most popular similarity search tools in drug discovery settings. ECFPs do not have a fixed bit string format but generate variable numbers of structural features for individual test molecules. This variable string design makes ECFP representations amenable to compound-class-directed modification. We have devised an intuitive feature-filtering technique that focuses ECFP search calculations on feature string ensembles of given compound activity classes. In combination with a simple bit-density-dependent similarity function, feature filtering consistently improved the search performance of ECFP calculations based on Tanimoto similarity and state-of-the-art data fusion techniques on a diverse array of activity classes. Feature filtering and the bit density similarity metric are easily implemented in the Pipeline Pilot environment. The approach provides a viable alternative to conventional similarity searching and should be of general interest to further improve the success rate of practical ECFP applications.

摘要

管道先导扩展连接性指纹(ECFPs)目前是药物发现环境中最受欢迎的相似性搜索工具之一。ECFPs没有固定的位串格式,而是为单个测试分子生成可变数量的结构特征。这种可变字符串设计使ECFP表示适合化合物类导向的修饰。我们设计了一种直观的特征过滤技术,将ECFP搜索计算集中在给定化合物活性类别的特征字符串集合上。结合一个简单的基于位密度的相似性函数,特征过滤在各种活性类别上,基于Tanimoto相似性和最新的数据融合技术,持续提高了ECFP计算的搜索性能。特征过滤和位密度相似性度量在管道先导环境中很容易实现。该方法为传统相似性搜索提供了一个可行的替代方案,对于进一步提高实际ECFP应用的成功率应该具有普遍意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验