"Coriolan Dragulescu" Institute of Chemistry, 24 Mihai Viteazu Ave., 300223 Timisoara, Romania.
Int J Mol Sci. 2023 May 31;24(11):9583. doi: 10.3390/ijms24119583.
To facilitate the identification of novel MAO-B inhibitors, we elaborated a consolidated computational approach, including a pharmacophoric atom-based 3D quantitative structure-activity relationship (QSAR) model, activity cliffs, fingerprint, and molecular docking analysis on a dataset of 126 molecules. An AAHR.2 hypothesis with two hydrogen bond acceptors (A), one hydrophobic (H), and one aromatic ring (R) supplied a statistically significant 3D QSAR model reflected by the parameters: R = 0.900 (training set); Q = 0.774 and Pearson's R = 0.884 (test set), stability s = 0.736. Hydrophobic and electron-withdrawing fields portrayed the relationships between structural characteristics and inhibitory activity. The quinolin-2-one scaffold has a key role in selectivity towards MAO-B with an AUC of 0.962, as retrieved by ECFP4 analysis. Two activity cliffs showing meaningful potency variation in the MAO-B chemical space were observed. The docking study revealed interactions with crucial residues TYR:435, TYR:326, CYS:172, and GLN:206 responsible for MAO-B activity. Molecular docking is in consensus with and complementary to pharmacophoric 3D QSAR, ECFP4, and MM-GBSA analysis. The computational scenario provided here will assist chemists in quickly designing and predicting new potent and selective candidates as MAO-B inhibitors for MAO-B-driven diseases. This approach can also be used to identify MAO-B inhibitors from other libraries or screen top molecules for other targets involved in suitable diseases.
为了方便鉴定新型 MAO-B 抑制剂,我们详细阐述了一种综合计算方法,包括基于药效团原子的 3D 定量构效关系(QSAR)模型、活性悬崖、指纹和分子对接分析,该方法基于 126 个分子的数据集。AAHR.2 假说具有两个氢键受体(A)、一个疏水性(H)和一个芳环(R),提供了一个统计学上显著的 3D QSAR 模型,该模型由以下参数反映:R = 0.900(训练集);Q = 0.774 和 Pearson's R = 0.884(测试集),稳定性 s = 0.736。疏水性和吸电子场描绘了结构特征与抑制活性之间的关系。喹啉-2-酮支架对 MAO-B 具有选择性,AUC 为 0.962,这是通过 ECFP4 分析得到的。观察到两个活性悬崖,它们在 MAO-B 化学空间中表现出有意义的效力变化。对接研究揭示了与关键残基 TYR:435、TYR:326、CYS:172 和 GLN:206 的相互作用,这些残基负责 MAO-B 的活性。分子对接与药效团 3D QSAR、ECFP4 和 MM-GBSA 分析一致且互补。这里提供的计算方案将有助于化学家快速设计和预测新的强效和选择性候选物,作为 MAO-B 驱动疾病的 MAO-B 抑制剂。该方法还可用于从其他文库中鉴定 MAO-B 抑制剂,或筛选其他适合疾病的目标的顶级分子。