Héroux Annie, Bozinovski Dragana M, Valley Michael P, Fitzpatrick Paul F, Orville Allen M
Department of Biology, Brookhaven National Laboratory, Upton, New York 11973, USA.
Biochemistry. 2009 Apr 21;48(15):3407-16. doi: 10.1021/bi8023042.
The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 A resolution or better of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct are described. The D402N enzyme has no detectable activity with neutral nitroalkanes [Valley, M. P., and Fitzpatrick, P. F. (2003) J. Am. Chem. Soc. 125, 8738-8739]. The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. The oxygens of the substrate nitro group interact both with amino acid residues and with the 2'-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped [Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062-2066]. The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2'-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle.
黄素酶硝基烷氧化酶是酰基辅酶A脱氢酶超家族的成员。硝基烷氧化酶催化中性硝基烷氧化为亚硝酸盐以及相应的醛或酮。本文描述了与结合底物的酶复合物以及捕获的底物 - 黄素加合物的分辨率达到2.2 Å或更高的晶体结构。D402N酶对中性硝基烷没有可检测到的活性[瓦利,M. P.,和菲茨帕特里克,P. F.(2003年)《美国化学会志》125,8738 - 8739]。在1 - 硝基己烷或1 - 硝基辛烷存在下结晶的D402N酶的结构表明结合位点中存在底物。底物的脂肪族链延伸到通向酶表面的通道中。底物硝基的氧既与氨基酸残基相互作用,也与FAD的2'-羟基相互作用。当硝基烷氧化酶在氰化物存在下氧化硝基烷时,可以捕获亲电黄素亚胺中间体[瓦利,M. P.,蒂奇,S. E.,和菲茨帕特里克,P. F.(2005年)《美国化学会志》127,2062 - 2066]。在1 - 硝基己烷氧化过程中用氰化物捕获的酶的结构表明存在修饰的黄素。一个连续的氢键网络通过FAD的2'-羟基将CN - 己基 - FAD的氮连接到延伸至蛋白质表面的一串水分子。总之,我们的互补方法提供了强有力的证据,表明黄素辅因子处于适当的氧化态,并且与在每个晶体结构中观察到的假定中间态相关性良好。因此,这些结果提供了硝基烷氧化酶反应循环中几个步骤的重要结构描述。