Wang Xiaoling, Sun Yuefeng, Song Lingguang, Mei Chuanshu
School of Environment Science and Engineering, Tianjin University, Tianjin, China.
J Environ Manage. 2009 Jun;90(8):2612-9. doi: 10.1016/j.jenvman.2009.02.009. Epub 2009 Mar 9.
The present optimisation model described in Part I of this work is applied to optimise water resources in the Haihe river basin, an important basin in north China that covers 31.82 million km(2). Results show that this optimisation model with the HGSAA solution is feasible and effective in the long-term optimisation of water resource use. It is shown that the combined forecasting method can improve the forecast precision. The results obtained indicate that the mean relative errors of BP and polynomial models are 2.3% and 4.9%, respectively, while that of the combined forecasting method is 1.93% in a case study on the Tumahe River for 2010. The combined forecasting method performs better because it incorporates various forecasting methods. The optimisation results show that both domestic and eco-environmental water demands can satisfy the requirements of the forecasting procedure, and the harmonious indices all exceeded 0.7. The Luanhe River is the most water-scarce sub-basin in the Haihe river basin.
本研究第一部分所述的当前优化模型应用于海河流域水资源的优化,海河流域是中国北方一个重要流域,面积达3182万平方千米。结果表明,该采用HGSAA解法的优化模型在水资源利用的长期优化方面是可行且有效的。结果表明,组合预测方法可以提高预测精度。在对2010年徒骇河的案例研究中,结果表明BP模型和多项式模型的平均相对误差分别为2.3%和4.9%,而组合预测方法的平均相对误差为1.93%。组合预测方法表现更好,因为它综合了各种预测方法。优化结果表明,生活用水和生态环境用水需求均能满足预测程序的要求,和谐指数均超过0.7。滦河流域是海河流域水资源最匮乏的子流域。