Suppr超能文献

灵长类动物大细胞通路细胞的色觉输入。

The chromatic input to cells of the magnocellular pathway of primates.

作者信息

Lee Barry B, Sun Hao

机构信息

SUNY College of Optometry, New York, NY 10036, USA.

出版信息

J Vis. 2009 Feb 12;9(2):15.1-18. doi: 10.1167/9.2.15.

Abstract

Parasol ganglion cells of the magnocellular (MC) pathway form the physiological substrate of a luminance channel underlying photometric tasks, but they also respond weakly to red-green chromatic modulation. This may take the form of a first-harmonic (1F) response to chromatic modulation at low temporal frequencies, and/or a second-harmonic (2F) response that is more marked at higher frequencies. It is shown here that both these responses originate from a receptive field component that is intermediate in size between center and surround, i.e., a discrete, chromatic receptive field is superimposed upon an achromatic center-surround structure. Its size is similar to the receptive field (center plus surround) of midget, parvocellular cells from the same retinal eccentricity. A 2F MC cell chromatic response component is shown to be present under cone silent substitution conditions, when only the middle- (M) or long-wavelength (L) cone is modulated. This and other features suggest it is a rectified response to a chromatic signal rather than a consequence of non-linear summation of M- and L-cone signals. A scheme is presented which could give rise to such responses. It is suggested that this chromatic input to MC cells can enhance motion signals to red-green borders close to equiluminance.

摘要

大细胞(MC)通路的伞状神经节细胞构成了光度学任务中亮度通道的生理基础,但它们对红-绿颜色调制也有微弱反应。这种反应可能表现为在低时间频率下对颜色调制的一次谐波(1F)反应,和/或在较高频率下更明显的二次谐波(2F)反应。本文表明,这两种反应均源自一个大小介于中心和外周之间的感受野成分,即一个离散的颜色感受野叠加在一个非彩色的中心-外周结构之上。其大小类似于来自相同视网膜离心率的侏儒型、小细胞的感受野(中心加外周)。当仅对中波(M)或长波(L)视锥进行调制时,即在视锥沉默替代条件下,显示出2F MC细胞颜色反应成分。这一特征及其他特征表明,它是对颜色信号的整流反应,而非M和L视锥信号非线性总和的结果。本文提出了一个可能产生这种反应的机制。有人认为,这种向MC细胞的颜色输入可以增强接近等亮度的红-绿边界的运动信号。

相似文献

1
The chromatic input to cells of the magnocellular pathway of primates.
J Vis. 2009 Feb 12;9(2):15.1-18. doi: 10.1167/9.2.15.
2
Connectomic Identification and Three-Dimensional Color Tuning of S-OFF Midget Ganglion Cells in the Primate Retina.
J Neurosci. 2019 Oct 2;39(40):7893-7909. doi: 10.1523/JNEUROSCI.0778-19.2019. Epub 2019 Aug 12.
3
Nonselective Wiring Accounts for Red-Green Opponency in Midget Ganglion Cells of the Primate Retina.
J Neurosci. 2018 Feb 7;38(6):1520-1540. doi: 10.1523/JNEUROSCI.1688-17.2017. Epub 2018 Jan 5.
4
Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker.
J Physiol. 1989 Jul;414:223-43. doi: 10.1113/jphysiol.1989.sp017685.
6
Receptive fields of primate retinal ganglion cells studied with a novel technique.
Vis Neurosci. 1998 Jan-Feb;15(1):161-75. doi: 10.1017/s095252389815112x.
7
Chromatic organization of ganglion cell receptive fields in the peripheral retina.
J Neurosci. 2005 May 4;25(18):4527-39. doi: 10.1523/JNEUROSCI.3921-04.2005.
8
L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina.
J Neurosci. 2004 Feb 4;24(5):1079-88. doi: 10.1523/JNEUROSCI.3828-03.2004.
9
Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus.
J Neurosci. 2002 Jul 15;22(14):6158-75. doi: 10.1523/JNEUROSCI.22-14-06158.2002.
10
Responses of macaque ganglion cells to movement of chromatic borders.
J Physiol. 1992 Dec;458:579-602. doi: 10.1113/jphysiol.1992.sp019435.

引用本文的文献

1
In vivo chromatic and spatial tuning of foveolar retinal ganglion cells in Macaca fascicularis.
PLoS One. 2022 Nov 29;17(11):e0278261. doi: 10.1371/journal.pone.0278261. eCollection 2022.
2
Temporal filtering of luminance and chromaticity in macaque visual cortex.
iScience. 2021 May 18;24(6):102536. doi: 10.1016/j.isci.2021.102536. eCollection 2021 Jun 25.
3
Magnocellular and parvocellular pathway contributions to facial threat cue processing.
Soc Cogn Affect Neurosci. 2019 Feb 13;14(2):151-162. doi: 10.1093/scan/nsz003.
4
Color Processing in Zebrafish Retina.
Front Cell Neurosci. 2018 Oct 3;12:327. doi: 10.3389/fncel.2018.00327. eCollection 2018.
6
Mixing of Chromatic and Luminance Retinal Signals in Primate Area V1.
Cereb Cortex. 2015 Jul;25(7):1920-37. doi: 10.1093/cercor/bhu002. Epub 2014 Jan 23.
7
Stimulus chromatic properties affect period doubling in the human cone flicker ERG.
Doc Ophthalmol. 2012 Aug;125(1):21-9. doi: 10.1007/s10633-012-9326-1. Epub 2012 May 13.
8
Luminance and chromatic contributions to a hyperacuity task: isolation by contrast polarity and target separation.
Vision Res. 2012 Mar 1;56:28-37. doi: 10.1016/j.visres.2012.01.007. Epub 2012 Jan 27.
10
Advances in color science: from retina to behavior.
J Neurosci. 2010 Nov 10;30(45):14955-63. doi: 10.1523/JNEUROSCI.4348-10.2010.

本文引用的文献

1
Neural models and physiological reality.
Vis Neurosci. 2008 May-Jun;25(3):231-41. doi: 10.1017/S0952523808080140. Epub 2008 Mar 6.
2
The contrast sensitivity of retinal ganglion cells of the cat.
J Physiol. 1966 Dec;187(3):517-52. doi: 10.1113/jphysiol.1966.sp008107.
3
The perception of motion in chromatic stimuli.
Behav Cogn Neurosci Rev. 2005 Sep;4(3):192-217. doi: 10.1177/1534582305285120.
4
Specificity of cone inputs to macaque retinal ganglion cells.
J Neurophysiol. 2006 Feb;95(2):837-49. doi: 10.1152/jn.00714.2005.
9
Failure of signed chromatic apparent motion with luminance masking.
Vision Res. 2003 Mar;43(7):751-9. doi: 10.1016/s0042-6989(03)00016-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验