Suppr超能文献

非选择性连接解释灵长类动物视网膜小型神经节细胞中红-绿拮抗现象。

Nonselective Wiring Accounts for Red-Green Opponency in Midget Ganglion Cells of the Primate Retina.

机构信息

State University of New York College of Optometry, Graduate Center for Vision Research, New York, New York 10036.

University of Washington, Department of Biological Structure and the Washington National Primate Research Center, Seattle, Washington 98195, and.

出版信息

J Neurosci. 2018 Feb 7;38(6):1520-1540. doi: 10.1523/JNEUROSCI.1688-17.2017. Epub 2018 Jan 5.

Abstract

In primate retina, "red-green" color coding is initiated when signals originating in long (L) and middle (M) wavelength-sensitive cone photoreceptors interact antagonistically. The center-surround receptive field of "midget" ganglion cells provides the neural substrate for L versus M cone-opponent interaction, but the underlying circuitry remains unsettled, centering around the longstanding question of whether specialized cone wiring is present. To address this question, we measured the strength, sign, and spatial tuning of L- and M-cone input to midget receptive fields in the peripheral retina of macaque primates of either sex. Consistent with previous work, cone opponency arose when one of the cone types showed a stronger connection to the receptive field center than to the surround. We implemented a difference-of-Gaussians spatial receptive field model, incorporating known biology of the midget circuit, to test whether physiological responses we observed in real cells could be captured entirely by anatomical nonselectivity. When this model sampled nonselectively from a realistic cone mosaic, it accurately reproduced key features of a cone-opponent receptive field structure, and predicted both the variability and strength of cone opponency across the retina. The model introduced here is consistent with abundant anatomical evidence for nonselective wiring, explains both local and global properties of the midget population, and supports a role in their multiplexing of spatial and color information. It provides a neural basis for human chromatic sensitivity across the visual field, as well as the maintenance of normal color vision despite significant variability in the relative number of L and M cones across individuals. Red-green color vision is a hallmark of the human and nonhuman primate that starts in the retina with the presence of long (L)- and middle (M)-wavelength sensitive cone photoreceptor types. Understanding the underlying retinal mechanism for color opponency has focused on the broad question of whether this characteristic can emerge from nonselective wiring, or whether complex cone-type-specific wiring must be invoked. We provide experimental and modeling support for the hypothesis that nonselective connectivity is sufficient to produce the range of red-green color opponency observed in midget ganglion cells across the retina. Our nonselective model reproduces the diversity of physiological responses of midget cells while also accounting for systematic changes in color sensitivity across the visual field.

摘要

在灵长类动物的视网膜中,起源于长(L)和中(M)波长敏感视锥光感受器的信号相互拮抗,从而启动“红-绿”颜色编码。“小”神经节细胞的中心-周围感受野为 L 与 M 视锥拮抗相互作用提供了神经基质,但潜在的电路仍未解决,中心问题是是否存在专门的视锥布线。为了解决这个问题,我们测量了雄性和雌性猕猴周边视网膜中小神经节细胞的 L 和 M 视锥输入的强度、符号和空间调谐。与之前的工作一致,当一种视锥类型与感受野中心的连接比与周围的连接更强时,就会出现视锥拮抗。我们实现了一个基于高斯差分的空间感受野模型,结合小神经节细胞回路的已知生物学,以测试我们在实际细胞中观察到的生理反应是否可以完全通过解剖学的非选择性来捕获。当该模型从现实的视锥镶嵌中进行非选择性采样时,它准确地再现了视锥拮抗感受野结构的关键特征,并预测了整个视网膜中视锥拮抗的可变性和强度。这里引入的模型与大量非选择性布线的解剖学证据一致,解释了小神经节细胞群体的局部和全局特性,并支持其在空间和颜色信息的多路复用中的作用。它为人类整个视野中的色觉敏感性以及尽管个体之间 L 和 M 视锥的相对数量存在显著差异仍能保持正常色觉提供了神经基础。红-绿颜色视觉是人类和非人类灵长类动物的标志,它始于视网膜中长(L)和中(M)波长敏感视锥光感受器类型的存在。理解颜色拮抗的基本视网膜机制集中在一个广泛的问题上,即这种特征是否可以从非选择性布线中出现,或者是否必须调用复杂的视锥类型特异性布线。我们为假设提供了实验和建模支持,即非选择性连接足以产生在整个视网膜中小神经节细胞观察到的红-绿颜色拮抗的范围。我们的非选择性模型再现了小神经节细胞生理反应的多样性,同时也解释了整个视野中颜色敏感性的系统变化。

相似文献

1
Nonselective Wiring Accounts for Red-Green Opponency in Midget Ganglion Cells of the Primate Retina.
J Neurosci. 2018 Feb 7;38(6):1520-1540. doi: 10.1523/JNEUROSCI.1688-17.2017. Epub 2018 Jan 5.
2
Connectomic Identification and Three-Dimensional Color Tuning of S-OFF Midget Ganglion Cells in the Primate Retina.
J Neurosci. 2019 Oct 2;39(40):7893-7909. doi: 10.1523/JNEUROSCI.0778-19.2019. Epub 2019 Aug 12.
3
L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina.
J Neurosci. 2004 Feb 4;24(5):1079-88. doi: 10.1523/JNEUROSCI.3828-03.2004.
5
Circuitry for color coding in the primate retina.
Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):582-8. doi: 10.1073/pnas.93.2.582.
6
Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina.
Vis Neurosci. 2014 Mar;31(2):139-51. doi: 10.1017/S0952523813000230. Epub 2013 Jul 29.
7
Amacrine cell contributions to red-green color opponency in central primate retina: a model study.
Vis Neurosci. 2007 Jul-Aug;24(4):535-47. doi: 10.1017/S0952523807070502.
8
Colour coding in the primate retina: diverse cell types and cone-specific circuitry.
Curr Opin Neurobiol. 2003 Aug;13(4):421-7. doi: 10.1016/s0959-4388(03)00103-x.
9
The spatial structure of cone-opponent receptive fields in macaque retina.
Vision Res. 2018 Oct;151:141-151. doi: 10.1016/j.visres.2017.05.013. Epub 2017 Jul 19.
10
Horizontal cells of the primate retina: cone specificity without spectral opponency.
Science. 1996 Feb 2;271(5249):656-9. doi: 10.1126/science.271.5249.656.

引用本文的文献

1
Connectome of a human foveal retina.
Res Sq. 2025 Aug 20:rs.3.rs-7312705. doi: 10.21203/rs.3.rs-7312705/v1.
2
Connectome of a human foveal retina.
bioRxiv. 2025 Aug 6:2025.04.05.647403. doi: 10.1101/2025.04.05.647403.
3
A circuit motif for color in the human foveal retina.
Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2405138121. doi: 10.1073/pnas.2405138121. Epub 2024 Aug 27.
4
Temporal Sensitivity for Achromatic and Chromatic Flicker across the Visual Cortex.
J Neurosci. 2024 May 22;44(21):e1395232024. doi: 10.1523/JNEUROSCI.1395-23.2024.
5
Cone-Opponent Ganglion Cells in the Primate Fovea Tuned to Noncardinal Color Directions.
J Neurosci. 2024 May 1;44(18):e1738232024. doi: 10.1523/JNEUROSCI.1738-23.2024.
6
Applying Resampling and Visualization Methods in Factor Analysis to Model Human Spatial Vision.
Invest Ophthalmol Vis Sci. 2024 Jan 2;65(1):17. doi: 10.1167/iovs.65.1.17.
7
Temporal sensitivity for achromatic and chromatic flicker across the visual cortex.
bioRxiv. 2024 Feb 14:2023.07.24.550403. doi: 10.1101/2023.07.24.550403.
8
Two mechanisms for direction selectivity in a model of the primate starburst amacrine cell.
Vis Neurosci. 2023 May 23;40:E003. doi: 10.1017/S0952523823000019.
9
Gaining the system: limits to compensating color deficiencies through post-receptoral gain changes.
J Opt Soc Am A Opt Image Sci Vis. 2023 Mar 1;40(3):A16-A25. doi: 10.1364/JOSAA.480035.
10
Comparative connectomics reveals noncanonical wiring for color vision in human foveal retina.
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2300545120. doi: 10.1073/pnas.2300545120. Epub 2023 Apr 25.

本文引用的文献

1
Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina.
J Neurosci. 2017 Sep 27;37(39):9498-9509. doi: 10.1523/JNEUROSCI.0529-17.2017. Epub 2017 Sep 4.
2
Vision science and adaptive optics, the state of the field.
Vision Res. 2017 Mar;132:3-33. doi: 10.1016/j.visres.2017.01.006. Epub 2017 Feb 27.
3
The elementary representation of spatial and color vision in the human retina.
Sci Adv. 2016 Sep 14;2(9):e1600797. doi: 10.1126/sciadv.1600797. eCollection 2016 Sep.
4
The Fuzzy Logic of Network Connectivity in Mouse Visual Thalamus.
Cell. 2016 Mar 24;165(1):192-206. doi: 10.1016/j.cell.2016.02.033.
6
Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.
Cereb Cortex. 2015 Oct;25(10):3877-93. doi: 10.1093/cercor/bhu270. Epub 2014 Nov 21.
8
Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings.
J Opt Soc Am A Opt Image Sci Vis. 2012 Feb 1;29(2):A223-32. doi: 10.1364/JOSAA.29.00A223.
9
Specificity and randomness: structure-function relationships in neural circuits.
Curr Opin Neurobiol. 2011 Oct;21(5):801-7. doi: 10.1016/j.conb.2011.07.004. Epub 2011 Aug 18.
10
Transmission of colour and acuity signals by parvocellular cells in marmoset monkeys.
J Physiol. 2011 Jun 1;589(Pt 11):2795-812. doi: 10.1113/jphysiol.2010.194076. Epub 2011 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验