State University of New York College of Optometry, Graduate Center for Vision Research, New York, New York 10036.
University of Washington, Department of Biological Structure, Seattle, Washington 98195, and.
J Neurosci. 2019 Oct 2;39(40):7893-7909. doi: 10.1523/JNEUROSCI.0778-19.2019. Epub 2019 Aug 12.
In the trichromatic primate retina, the "midget" retinal ganglion cell is the classical substrate for red-green color signaling, with a circuitry that enables antagonistic responses between long (L)- and medium (M)-wavelength-sensitive cone inputs. Previous physiological studies showed that some OFF midget ganglion cells may receive sparse input from short (S)-wavelength-sensitive cones, but the effect of S-cone inputs on the chromatic tuning properties of such cells has not been explored. Moreover, anatomical evidence for a synaptic pathway from S cones to OFF midget ganglion cells through OFF midget bipolar cells remains ambiguous. In this study, we address both questions for the macaque monkey retina. First, we used serial block-face electron microscopy to show that every S cone in the parafoveal retina synapses principally with a single OFF midget bipolar cell, which in turn forms a private-line connection with an OFF midget ganglion cell. Second, we used patch electrophysiology to characterize the chromatic tuning of OFF midget ganglion cells in the near peripheral retina that receive combined input from L, M, and S cones. These "S-OFF" midget cells have a characteristic S-cone spatial signature, but demonstrate heterogeneous color properties due to the variable strength of L, M, and S cone input across the receptive field. Together, these findings strongly support the hypothesis that the OFF midget pathway is the major conduit for S-OFF signals in primate retina and redefines the pathway as a chromatically complex substrate that encodes color signals beyond the classically recognized L versus M and S versus L+M cardinal mechanisms. The first step of color processing in the visual pathway of primates occurs when signals from short (S)-, middle (M)-, and long (L)-wavelength-sensitive cone types interact antagonistically within the retinal circuitry to create color-opponent pathways. The midget (L versus M or "red-green") and small bistratified (S vs L+M, or "blue-yellow") ganglion cell pathways appear to provide the physiological origin of the cardinal axes of human color vision. Here we confirm the presence of an additional S-OFF midget circuit in the macaque monkey fovea with scanning block-face electron microscopy and show physiologically that a subpopulation of S-OFF midget cells combine S, L, and M cone inputs along noncardinal directions of color space, expanding the retinal role in color coding.
在三色视的灵长类视网膜中,“侏儒”神经节细胞是红-绿颜色信号的经典基质,具有使长(L)和中(M)波长敏感的视锥输入之间产生拮抗反应的回路。以前的生理研究表明,一些 OFF 侏儒神经节细胞可能会从短(S)波长敏感的视锥细胞中接收稀疏的输入,但 S 视锥细胞输入对这些细胞的色觉调谐特性的影响尚未得到探索。此外,S 视锥细胞到 OFF 侏儒双极细胞再到 OFF 侏儒神经节细胞的突触通路的解剖学证据仍然存在歧义。在这项研究中,我们针对猕猴的视网膜回答了这两个问题。首先,我们使用串行块面电子显微镜显示,在近黄斑区的视网膜中,每个 S 视锥都主要与单个 OFF 侏儒双极细胞形成突触,而后者又与 OFF 侏儒神经节细胞形成私人线路连接。其次,我们使用膜片钳电生理学方法来描述在接受来自 L、M 和 S 视锥的联合输入的近周边视网膜中 OFF 侏儒神经节细胞的色觉调谐。这些“S-OFF”侏儒细胞具有独特的 S 视锥空间特征,但由于视场中 L、M 和 S 视锥输入的强度不同,表现出异质的颜色特性。总之,这些发现强烈支持 OFF 侏儒途径是灵长类视网膜中 S-OFF 信号的主要途径的假设,并将该途径重新定义为一种色觉复杂的基质,它编码超越经典 L 与 M 和 S 与 L+M 基数机制的颜色信号。灵长类动物视觉通路中颜色处理的第一步是当短(S)、中(M)和长(L)波长敏感的视锥类型的信号在视网膜回路中拮抗地相互作用时,形成色觉拮抗途径。侏儒(L 与 M 或“红-绿”)和小双分层(S 与 L+M,或“蓝-黄”)神经节细胞途径似乎为人类颜色视觉的基数轴提供了生理起源。在这里,我们使用扫描块面电子显微镜确认了猕猴黄斑中存在额外的 S-OFF 侏儒回路,并在生理上表明,一部分 S-OFF 侏儒细胞沿着颜色空间的非基数方向组合 S、L 和 M 视锥的输入,扩展了视网膜在颜色编码中的作用。