Kadrmas Dan J, Casey Michael E, Black Noel F, Hamill James J, Panin Vladimir Y, Conti Maurizio
Department of Radiology, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT 84108 USA.
IEEE Trans Med Imaging. 2009 Apr;28(4):523-34. doi: 10.1109/TMI.2008.2006520. Epub 2008 Oct 3.
The objective of this work was to evaluate the lesion detection performance of four fully-3D positron emission tomography (PET) reconstruction schemes using experimentally acquired data. A multi-compartment anthropomorphic phantom was set up to mimic whole-body (18)F-fluorodeoxyglucose (FDG) cancer imaging and scanned 12 times in 3D mode, obtaining count levels typical of noisy clinical scans. Eight of the scans had 26 (68)Ge "shell-less" lesions (6, 8-, 10-, 12-, 16-mm diameter) placed throughout the phantom with various target:background ratios. This provided lesion-present and lesion-absent datasets with known truth appropriate for evaluating lesion detectability by localization receiver operating characteristic (LROC) methods. Four reconstruction schemes were studied: 1) Fourier rebinning (FORE) followed by 2D attenuation-weighted ordered-subsets expectation-maximization, 2) fully-3D AW-OSEM, 3) fully-3D ordinary-Poisson line-of-response (LOR-)OSEM; and 4) fully-3D LOR-OSEM with an accurate point-spread function (PSF) model. Two forms of LROC analysis were performed. First, a channelized nonprewhitened (CNPW) observer was used to optimize processing parameters (number of iterations, post-reconstruction filter) for the human observer study. Human observers then rated each image and selected the most-likely lesion location. The area under the LROC curve ( A(LROC)) and the probability of correct localization were used as figures-of-merit. The results of the human observer study found no statistically significant difference between FORE and AW-OSEM3D ( A(LROC)=0.41 and 0.36, respectively), an increase in lesion detection performance for LOR-OSEM3D ( A(LROC)=0.45, p=0.076), and additional improvement with the use of the PSF model ( A(LROC)=0.55, p=0.024). The numerical CNPW observer provided the same rankings among algorithms, but obtained different values of A(LROC). These results show improved lesion detection performance for the reconstruction algorithms with more sophisticated statistical and imaging models as compared to the previous-generation algorithms.
这项工作的目的是使用实验获取的数据评估四种全三维正电子发射断层扫描(PET)重建方案的病灶检测性能。设置了一个多隔室人体模型来模拟全身(18)F-氟脱氧葡萄糖(FDG)癌症成像,并以三维模式扫描12次,获得典型的临床噪声扫描计数水平。其中8次扫描在整个模型中放置了26个(68)Ge“无壳”病灶(直径为6、8、10、12、16毫米),具有不同的靶:本底比。这提供了有病灶和无病灶的数据集,其已知真值适合通过定位接收者操作特征(LROC)方法评估病灶可检测性。研究了四种重建方案:1)傅里叶重排(FORE),随后进行二维衰减加权有序子集期望最大化;2)全三维AW-OSEM;3)全三维普通泊松响应线(LOR-)OSEM;4)具有精确点扩散函数(PSF)模型的全三维LOR-OSEM。进行了两种形式的LROC分析。首先,使用通道化非预白化(CNPW)观察者来优化人类观察者研究的处理参数(迭代次数、重建后滤波器)。然后,人类观察者对每张图像进行评分,并选择最可能的病灶位置。LROC曲线下面积(A(LROC))和正确定位概率用作评价指标。人类观察者研究的结果发现,FORE和AW-OSEM3D之间没有统计学上的显著差异(A(LROC)分别为0.41和0.36),LOR-OSEM3D的病灶检测性能有所提高(A(LROC)=0.45,p=0.076),并且使用PSF模型有进一步改善(A(LROC)=0.55,p=0.024)。数值CNPW观察者在算法之间提供了相同的排名,但获得了不同的A(LROC)值。这些结果表明,与上一代算法相比,具有更复杂统计和成像模型的重建算法在病灶检测性能上有所提高。