Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.
German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
BMC Cancer. 2022 Aug 18;22(1):899. doi: 10.1186/s12885-022-09993-4.
New-generation silicon-photomultiplier (SiPM)-based PET/CT systems exhibit an improved lesion detectability and image quality due to a higher detector sensitivity. Consequently, the acquisition time can be reduced while maintaining diagnostic quality. The aim of this study was to determine the lowest F-FDG PET acquisition time without loss of diagnostic information and to optimise image reconstruction parameters (image reconstruction algorithm, number of iterations, voxel size, Gaussian filter) by phantom imaging. Moreover, patient data are evaluated to confirm the phantom results.
Three phantoms were used: a soft-tissue tumour phantom, a bone-lung tumour phantom, and a resolution phantom. Phantom conditions (lesion sizes from 6.5 mm to 28.8 mm in diameter, lesion activity concentration of 15 kBq/mL, and signal-to-background ratio of 5:1) were derived from patient data. PET data were acquired on an SiPM-based Biograph Vision PET/CT system for 10 min in list-mode format and resampled into time frames from 30 to 300 s in 30-s increments to simulate different acquisition times. Different image reconstructions with varying iterations, voxel sizes, and Gaussian filters were probed. Contrast-to-noise-ratio (CNR), maximum, and peak signal were evaluated using the 10-min acquisition time image as reference. A threshold CNR value ≥ 5 and a maximum (peak) deviation of ± 20% were considered acceptable. 20 patient data sets were evaluated regarding lesion quantification as well as agreement and correlation between reduced and full acquisition time standard uptake values (assessed by Pearson correlation coefficient, intraclass correlation coefficient, Bland-Altman analyses, and Krippendorff's alpha).
An acquisition time of 60 s per bed position yielded acceptable detectability and quantification results for clinically relevant phantom lesions ≥ 9.7 mm in diameter using OSEM-TOF or OSEM-TOF+PSF image reconstruction, a 4-mm Gaussian filter, and a 1.65 × 1.65 x 2.00-mm or 3.30 × 3.30 x 3.00-mm voxel size. Correlation and agreement of patient lesion quantification between full and reduced acquisition times were excellent.
A threefold reduction in acquisition time is possible. Patients might benefit from more comfortable examinations or reduced radiation exposure, if instead of the acquisition time the applied activity is reduced.
新一代基于硅光电倍增管(SiPM)的 PET/CT 系统由于具有更高的探测器灵敏度,因此具有更好的病灶检测能力和图像质量。因此,可以在保持诊断质量的同时,减少采集时间。本研究的目的是确定在不损失诊断信息的情况下,最低的 F-FDG PET 采集时间,并通过体模成像来优化图像重建参数(图像重建算法、迭代次数、体素大小、高斯滤波器)。此外,还评估了患者数据以确认体模结果。
使用了三个体模:软组织肿瘤体模、骨肺肿瘤体模和分辨率体模。体模条件(直径为 6.5-28.8 毫米的病灶大小、15kBq/mL 的病灶活性浓度和 5:1 的信号与背景比)源自患者数据。在基于 SiPM 的 Biograph Vision PET/CT 系统上以列表模式格式采集 10 分钟的 PET 数据,并以 30 秒的增量将其重新采样到 30-300 秒的时间帧中,以模拟不同的采集时间。使用不同的迭代次数、体素大小和高斯滤波器进行了不同的图像重建。使用 10 分钟采集时间的图像作为参考,评估对比噪声比(CNR)、最大值和峰值信号。可接受的阈值 CNR 值≥5,最大值(峰值)偏差为±20%。还评估了 20 例患者数据的病灶定量以及减少和完整采集时间标准摄取值之间的一致性和相关性(通过 Pearson 相关系数、组内相关系数、Bland-Altman 分析和 Krippendorff 的 alpha 进行评估)。
对于直径≥9.7 毫米的临床相关体模病灶,使用 OSEM-TOF 或 OSEM-TOF+PSF 图像重建、4 毫米高斯滤波器以及 1.65×1.65×2.00 毫米或 3.30×3.30×3.00 毫米体素大小,采集时间为 60 秒/床位位置可获得可接受的检测能力和定量结果。患者全采集时间和半采集时间的病灶定量相关性和一致性非常好。
采集时间可以减少三倍。如果减少应用活动量而不是采集时间,患者可能会受益于更舒适的检查或减少辐射暴露。