IEEE Trans Med Imaging. 2021 Aug;40(8):2142-2151. doi: 10.1109/TMI.2021.3073243. Epub 2021 Jul 30.
In many diagnostic imaging settings, including positron emission tomography (PET), images are typically used for multiple tasks such as detecting disease and quantifying disease. Unlike conventional image reconstruction that optimizes a single objective, this work proposes a multi-objective optimization algorithm for PET image reconstruction to identify a set of images that are optimal for more than one task. This work is reliant on a genetic algorithm to evolve a set of solutions that satisfies two distinct objectives. In this paper, we defined the objectives as the commonly used Poisson log-likelihood function, typically reflective of quantitative accuracy, and a variant of the generalized scan-statistic model, to reflect detection performance. The genetic algorithm uses new mutation and crossover operations at each iteration. After each iteration, the child population is selected with non-dominated sorting to identify the set of solutions along the dominant front or fronts. After multiple iterations, these fronts approach a single non-dominated optimal front, defined as the set of PET images for which none the objective function values can be improved without reducing the opposing objective function. This method was applied to simulated 2D PET data of the heart and liver with hot features. We compared this approach to conventional, single-objective approaches for trading off performance: maximum likelihood estimation with increasing explicit regularization and maximum a posteriori estimation with varying penalty strength. Results demonstrate that the proposed method generates solutions with comparable to improved objective function values compared to the conventional approaches for trading off performance amongst different tasks. In addition, this approach identifies a diverse set of solutions in the multi-objective function space which can be challenging to estimate with single-objective formulations.
在许多诊断成像环境中,包括正电子发射断层扫描 (PET),图像通常用于多种任务,例如检测疾病和量化疾病。与优化单个目标的传统图像重建不同,这项工作提出了一种用于 PET 图像重建的多目标优化算法,以识别一组对多个任务都最优的图像。这项工作依赖于遗传算法来进化一组满足两个不同目标的解决方案。在本文中,我们将目标定义为常用的泊松对数似然函数,通常反映定量准确性,以及广义扫描统计模型的变体,以反映检测性能。遗传算法在每次迭代时使用新的突变和交叉操作。在每次迭代之后,使用非支配排序选择子种群,以确定沿着占优前沿或前沿的解决方案集。经过多次迭代后,这些前沿接近单一非占优最优前沿,定义为不存在目标函数值可以提高而不降低相反目标函数值的 PET 图像集。该方法应用于具有热点特征的心脏和肝脏的模拟 2D PET 数据。我们将这种方法与用于权衡性能的传统单目标方法进行了比较:具有递增显式正则化的最大似然估计和具有变化惩罚强度的最大后验估计。结果表明,与用于权衡不同任务之间性能的传统方法相比,所提出的方法生成的解决方案具有可比甚至改进的目标函数值。此外,这种方法在多目标函数空间中识别出一组多样化的解决方案,这对于使用单目标公式来估计可能具有挑战性。