Oliver Timothy F, Schmidt Bertil, Jakop Yanto, Maskell Douglas L
School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore.
IEEE Trans Inf Technol Biomed. 2009 Sep;13(5):740-6. doi: 10.1109/TITB.2007.904632. Epub 2008 Jun 10.
Molecular biologists use hidden Markov models (HMMs) as a popular tool to statistically describe biological sequence families. This statistical description can then be used for sensitive and selective database scanning, e.g., new protein sequences are compared with a set of HMMs to detect functional similarities. Efficient dynamic-programming algorithms exist for solving this problem; however, current solutions still require significant scan times. These scan time requirements are likely to become even more severe due to the rapid growth in the size of these databases. This paper shows how reconfigurable architectures can be used to derive an efficient fine-grained parallelization of the dynamic programming calculation. We describe how this technique leads to significant runtime savings for HMM database scanning on a standard off-the-shelf field-programmable gate array (FPGA).
分子生物学家将隐马尔可夫模型(HMM)作为一种流行工具,用于从统计学角度描述生物序列家族。这种统计描述随后可用于灵敏且有选择性的数据库扫描,例如,将新的蛋白质序列与一组HMM进行比较,以检测功能相似性。存在有效的动态规划算法来解决此问题;然而,当前的解决方案仍然需要大量的扫描时间。由于这些数据库规模的迅速增长,这些扫描时间要求可能会变得更加苛刻。本文展示了可重构架构如何用于实现动态规划计算的高效细粒度并行化。我们描述了该技术如何在标准的现成现场可编程门阵列(FPGA)上显著节省HMM数据库扫描的运行时间。