Suppr超能文献

基于准共识的蛋白质序列轮廓隐马尔可夫模型比较

Quasi-consensus-based comparison of profile hidden Markov models for protein sequences.

作者信息

Kahsay Robel Y, Wang Guoli, Gao Guang, Liao Li, Dunbrack Roland

机构信息

Delaware Biotechnology Institute, Newark, DE 19715, USA.

出版信息

Bioinformatics. 2005 May 15;21(10):2287-93. doi: 10.1093/bioinformatics/bti374. Epub 2005 Mar 29.

Abstract

A simple approach for the sensitive detection of distant relationships among protein families and for sequence-structure alignment via comparison of hidden Markov models based on their quasi-consensus sequences is presented. Using a previously published benchmark dataset, the approach is demonstrated to give better homology detection and yield alignments with improved accuracy in comparison to an existing state-of-the-art dynamic programming profile-profile comparison method. This method also runs significantly faster and is therefore suitable for a server covering the rapidly increasing structure database. A server based on this method is available at http://liao.cis.udel.edu/website/servers/modmod

摘要

本文提出了一种简单的方法,用于灵敏检测蛋白质家族之间的远距离关系,并通过基于准共有序列比较隐藏马尔可夫模型来进行序列-结构比对。使用先前发布的基准数据集,与现有的最先进动态规划轮廓-轮廓比较方法相比,该方法在同源性检测方面表现更好,并且能产生准确性更高的比对结果。该方法运行速度也明显更快,因此适用于涵盖快速增长的结构数据库的服务器。基于此方法的服务器可在http://liao.cis.udel.edu/website/servers/modmod获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验