Suppr超能文献

从神经电和血液动力学记录中估计有效和功能性皮质连接性。

Estimation of effective and functional cortical connectivity from neuroelectric and hemodynamic recordings.

作者信息

Astolfi Laura, De Vico Fallani F, Cincotti F, Mattia D, Marciani M G, Salinari S, Sweeney J, Miller G A, He B, Babiloni F

机构信息

Department of Physiology and Pharmacology, University of Rome La Sapienza, 00185 Rome, Italy.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2009 Jun;17(3):224-33. doi: 10.1109/TNSRE.2008.2010472. Epub 2008 Dec 9.

Abstract

In this paper, different linear and nonlinear methodologies for the estimation of cortical connectivity from neuroelectric and hemodynamic measurements are reviewed and applied on common data set in order to highlight similarities and differences in the results. Different effective and functional connectivity methods were applied to motor and cognitive data sets, including structural equation modeling (SEM), directed transfer function (DTF), partial directed coherence (PDC), and direct directed transfer function (dDTF). Comparisons were made between the results in order to understand if, for a same dataset, effective and functional connectivity estimators can return the same cortical connectivity patterns. An application of a nonlinear method [phase synchronization index (PSI)] to similar executed and imagined movements was also reviewed. Connectivity patterns estimated with the use of the neuroelectric information and of the information from the multimodal integration of neuroelectric and hemodynamic data were also compared. Results suggests that the estimation of the cortical connectivity patterns performed with the linear methods (SEM, DTF, PDC, dDTF) or with the nonlinear method (PSI) on movement related potentials returned similar cortical networks. Differences in cortical connectivity were noted between the patterns estimated with the use of multimodal integration and those estimated by using only the neuroelectric data.

摘要

在本文中,回顾了用于从神经电和血液动力学测量估计皮质连接性的不同线性和非线性方法,并将其应用于通用数据集,以突出结果中的异同。不同的有效连接性和功能连接性方法被应用于运动和认知数据集,包括结构方程建模(SEM)、定向传递函数(DTF)、偏定向相干(PDC)和直接定向传递函数(dDTF)。对结果进行了比较,以了解对于同一数据集,有效连接性和功能连接性估计器是否能返回相同的皮质连接模式。还回顾了一种非线性方法[相位同步指数(PSI)]在相似的执行和想象运动中的应用。还比较了使用神经电信息以及神经电和血液动力学数据的多模态整合信息估计的连接模式。结果表明,使用线性方法(SEM、DTF、PDC、dDTF)或非线性方法(PSI)对运动相关电位进行的皮质连接模式估计返回了相似的皮质网络。在使用多模态整合估计的模式与仅使用神经电数据估计的模式之间,注意到了皮质连接性的差异。

相似文献

1
Estimation of effective and functional cortical connectivity from neuroelectric and hemodynamic recordings.
IEEE Trans Neural Syst Rehabil Eng. 2009 Jun;17(3):224-33. doi: 10.1109/TNSRE.2008.2010472. Epub 2008 Dec 9.
4
Comparison of different cortical connectivity estimators for high-resolution EEG recordings.
Hum Brain Mapp. 2007 Feb;28(2):143-57. doi: 10.1002/hbm.20263.
5
Estimation of time-varying causal connectivity on EEG signals with the use of adaptive autoregressive parameters.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3512-5. doi: 10.1109/IEMBS.2008.4649963.
6
Assessing cortical functional connectivity by partial directed coherence: simulations and application to real data.
IEEE Trans Biomed Eng. 2006 Sep;53(9):1802-12. doi: 10.1109/TBME.2006.873692.
7
Modeling the connectivity of the neural systems.
IEEE Trans Neural Syst Rehabil Eng. 2009 Jun;17(3):201-2. doi: 10.1109/tnsre.2009.2024068.
9
Determination of EEG activity propagation: pair-wise versus multichannel estimate.
IEEE Trans Biomed Eng. 2004 Sep;51(9):1501-10. doi: 10.1109/TBME.2004.827929.
10
Tracking the time-varying cortical connectivity patterns by adaptive multivariate estimators.
IEEE Trans Biomed Eng. 2008 Mar;55(3):902-13. doi: 10.1109/TBME.2007.905419.

引用本文的文献

1
Develop an emotion recognition system using jointly connectivity between electroencephalogram and electrocardiogram signals.
Heliyon. 2025 Jan 8;11(2):e41767. doi: 10.1016/j.heliyon.2025.e41767. eCollection 2025 Jan 30.
2
EEG-based functional connectivity for tactile roughness discrimination.
Cogn Neurodyn. 2023 Aug;17(4):921-940. doi: 10.1007/s11571-022-09876-1. Epub 2022 Sep 26.
3
Emotion recognition using effective connectivity and pre-trained convolutional neural networks in EEG signals.
Cogn Neurodyn. 2022 Oct;16(5):1087-1106. doi: 10.1007/s11571-021-09756-0. Epub 2022 Jan 9.
4
Measuring Spinal Cord Potentials and Cortico-Spinal Interactions After Wrist Movements Induced by Neuromuscular Electrical Stimulation.
Front Hum Neurosci. 2022 Mar 11;16:858873. doi: 10.3389/fnhum.2022.858873. eCollection 2022.
5
Multivariate autoregressive model estimation for high-dimensional intracranial electrophysiological data.
Neuroimage. 2022 Jul 1;254:119057. doi: 10.1016/j.neuroimage.2022.119057. Epub 2022 Mar 27.
6
Statistical Significance Assessment of Phase Synchrony in the Presence of Background Couplings: An ECoG Study.
Brain Topogr. 2019 Sep;32(5):882-896. doi: 10.1007/s10548-019-00718-8. Epub 2019 May 25.
7
EEG Source Imaging: A Practical Review of the Analysis Steps.
Front Neurol. 2019 Apr 4;10:325. doi: 10.3389/fneur.2019.00325. eCollection 2019.
9
How much time has passed? Ask your heart.
Front Neurorobot. 2014 Apr 9;8:15. doi: 10.3389/fnbot.2014.00015. eCollection 2014.
10
A review of EEG and MEG for brainnetome research.
Cogn Neurodyn. 2014 Apr;8(2):87-98. doi: 10.1007/s11571-013-9274-9. Epub 2013 Nov 22.

本文引用的文献

2
fMRI-EEG integrated cortical source imaging by use of time-variant spatial constraints.
Neuroimage. 2008 Feb 1;39(3):1198-214. doi: 10.1016/j.neuroimage.2007.10.003. Epub 2007 Oct 12.
3
Imaging functional brain connectivity patterns from high-resolution EEG and fMRI via graph theory.
Psychophysiology. 2007 Nov;44(6):880-93. doi: 10.1111/j.1469-8986.2007.00556.x. Epub 2007 Jul 7.
4
Evaluation of cortical connectivity during real and imagined rhythmic finger tapping.
Brain Topogr. 2007 Spring;19(3):137-45. doi: 10.1007/s10548-007-0020-7.
5
Integration of EEG/MEG with MRI and fMRI.
IEEE Eng Med Biol Mag. 2006 Jul-Aug;25(4):46-53. doi: 10.1109/memb.2006.1657787.
6
Comparison of different cortical connectivity estimators for high-resolution EEG recordings.
Hum Brain Mapp. 2007 Feb;28(2):143-57. doi: 10.1002/hbm.20263.
7
Functional cortical source imaging from simultaneously recorded ERP and fMRI.
J Neurosci Methods. 2006 Oct 15;157(1):118-23. doi: 10.1016/j.jneumeth.2006.03.015. Epub 2006 May 3.
8
Nonlinear dynamical analysis of EEG and MEG: review of an emerging field.
Clin Neurophysiol. 2005 Oct;116(10):2266-301. doi: 10.1016/j.clinph.2005.06.011.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验