Sedehi Javid Farhadi, Dabanloo Nader Jafarnia, Maghooli Keivan, Sheikhani Ali
Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Heliyon. 2025 Jan 8;11(2):e41767. doi: 10.1016/j.heliyon.2025.e41767. eCollection 2025 Jan 30.
This study pioneers an innovative approach to improve the accuracy and dependability of emotion recognition (ER) systems by integrating electroencephalogram (EEG) with electrocardiogram (ECG) data. We propose a novel method of estimating effective connectivity (EC) to capture the dynamic interplay between the heart and brain during emotions of happiness, disgust, fear, and sadness. Leveraging three EC estimation techniques (Granger causality (GC), partial directed coherence (PDC) and directed transfer function (DTF)), we feed the resulting EC representations as inputs into convolutional neural networks (CNNs), namely ResNet-18 and MobileNetV2, known for their swift and superior performance. To evaluate this approach, we have used EEG and ECG data from the public MAHNOB-HCI database through 5-fold cross-validation criterion. Remarkably, our approach achieves an average accuracy of 97.34 ± 1.19 and 96.53 ± 3.54 for DTF images within the alpha frequency band using ResNet-18 and MobileNetV2, respectively. Comparative analyses in comparison to cutting-edge research unequivocally prove the efficacy of augmenting ECG with EEG, showcasing substantial improvements in ER performance across the spectrum of emotions studied.
本研究开创了一种创新方法,通过将脑电图(EEG)与心电图(ECG)数据相结合,提高情感识别(ER)系统的准确性和可靠性。我们提出了一种估计有效连通性(EC)的新方法,以捕捉在快乐、厌恶、恐惧和悲伤情绪期间心脏与大脑之间的动态相互作用。利用三种EC估计技术(格兰杰因果关系(GC)、偏定向相干(PDC)和定向传递函数(DTF)),我们将得到的EC表示作为输入,输入到以快速和卓越性能著称的卷积神经网络(CNN),即ResNet-18和MobileNetV2中。为了评估这种方法,我们通过5折交叉验证标准,使用了来自公共MAHNOB-HCI数据库的EEG和ECG数据。值得注意的是,我们的方法分别使用ResNet-18和MobileNetV2,在阿尔法频段内对DTF图像实现了97.34±1.19和96.53±3.54的平均准确率。与前沿研究的对比分析明确证明了用EEG增强ECG的有效性,展示了在所研究的情感范围内ER性能的显著提高。