Suppr超能文献

高维颅内电生理数据的多元自回归模型估计。

Multivariate autoregressive model estimation for high-dimensional intracranial electrophysiological data.

机构信息

Department of Anesthesiology, University of Wisconsin, Madison, WI 53706, USA.

Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, USA.

出版信息

Neuroimage. 2022 Jul 1;254:119057. doi: 10.1016/j.neuroimage.2022.119057. Epub 2022 Mar 27.

Abstract

Fundamental to elucidating the functional organization of the brain is the assessment of causal interactions between different brain regions. Multivariate autoregressive (MVAR) modeling techniques applied to multisite electrophysiological recordings are a promising avenue for identifying such causal links. They estimate the degree to which past activity in one or more brain regions is predictive of another region's present activity, while simultaneously accounting for the mediating effects of other regions. Including as many mediating variables as possible in the model has the benefit of drastically reducing the odds of detecting spurious causal connectivity. However, effective bounds on the number of MVAR model coefficients that can be estimated reliably from limited data make exploiting the potential of MVAR models challenging for even modest numbers of recording sites. Here, we utilize well-established dimensionality-reduction techniques to fit MVAR models to human intracranial data from ∼100 - 200 recording sites spanning dozens of anatomically and functionally distinct cortical regions. First, we show that high-dimensional MVAR models can be successfully estimated from long segments of data and yield plausible connectivity profiles. Next, we use these models to generate synthetic data with known ground-truth connectivity to explore the utility of applying principal component analysis and group least absolute shrinkage and selection operator (gLASSO) to reduce the number of parameters (connections) during model fitting to shorter data segments. We show that gLASSO is highly effective for recovering ground-truth connectivity in the limited data regime, capturing important features of connectivity for high-dimensional models with as little as 10 seconds of data. The methods presented here have broad applicability to the analysis of high-dimensional time series data in neuroscience, facilitating the elucidation of the neural basis of sensation, cognition, and arousal.

摘要

阐明大脑功能组织的基础是评估不同大脑区域之间的因果相互作用。将多变量自回归 (MVAR) 建模技术应用于多部位电生理记录是识别这种因果关系的一种很有前途的方法。它们估计一个或多个大脑区域的过去活动在多大程度上可以预测另一个区域的当前活动,同时考虑到其他区域的中介效应。在模型中包含尽可能多的中介变量可以大大降低检测虚假因果连接的可能性。然而,从有限的数据中可靠估计 MVAR 模型系数的数量的有效限制使得即使对于适度数量的记录站点,充分利用 MVAR 模型的潜力也具有挑战性。在这里,我们利用成熟的降维技术,将 MVAR 模型拟合到来自数十个解剖和功能上不同的皮质区域的约 100-200 个记录站点的人类颅内数据。首先,我们表明,高维 MVAR 模型可以从长段数据中成功估计,并产生合理的连接谱。接下来,我们使用这些模型生成具有已知真实连接的合成数据,以探索在较短数据段的模型拟合过程中应用主成分分析和组最小绝对收缩和选择算子 (gLASSO) 来减少参数(连接)数量的效用。我们表明,gLASSO 在有限数据范围内非常有效地恢复真实连接,捕获具有多达 10 秒数据的高维模型的连接的重要特征。这里提出的方法具有广泛的适用性,可以用于神经科学中高维时间序列数据的分析,有助于阐明感觉、认知和觉醒的神经基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验