Suppr超能文献

使用刺激频率耳声发射来研究传出神经和耳蜗对时间过冲的贡献。

Use of stimulus-frequency otoacoustic emissions to investigate efferent and cochlear contributions to temporal overshoot.

作者信息

Keefe Douglas H, Schairer Kim S, Ellison John C, Fitzpatrick Denis F, Jesteadt Walt

机构信息

Boys Town National Research Hospital, Omaha, Nebraska 68131, USA.

出版信息

J Acoust Soc Am. 2009 Mar;125(3):1595-604. doi: 10.1121/1.3068443.

Abstract

Behavioral threshold for a tone burst presented in a long-duration noise masker decreases as the onset of the tone burst is delayed relative to masker onset. The threshold difference between detection of early- and late-onset tone bursts is called overshoot. Although the underlying mechanisms are unclear, one hypothesis is that overshoot occurs due to efferent suppression of cochlear nonlinearity [von Klitzing, R., and Kohlrausch, A. (1994). J. Acoust. Soc. Am. 95, 2192-2201]. This hypothesis was tested by using overshoot conditions to elicit stimulus-frequency otoacoustic emissions (SFOAEs), which provide a physiological measure of cochlear nonlinearity. SFOAE and behavioral thresholds were estimated using a modified maximum-likelihood yes-no procedure. The masker was a 400-ms "frozen" notched noise. The signal was a 20-ms, 4-kHz tone burst presented at 1 or 200 ms after the noise onset. Behavioral overshoot results replicated previous studies, but no overshoot was observed in SFOAE thresholds. This suggests that either efferent suppression of cochlear nonlinearity is not involved in overshoot, or a SFOAE threshold estimation procedure based on stimuli similar to those used to study behavioral overshoot is not sensitive enough to measure the effect.

摘要

在长时程噪声掩蔽器中呈现的短纯音的行为阈值会随着短纯音的起始相对于掩蔽器起始的延迟而降低。早期和晚期起始短纯音检测之间的阈值差异被称为过冲。尽管其潜在机制尚不清楚,但一种假设是过冲是由于传出神经对耳蜗非线性的抑制作用[冯·克利青,R.,和科尔劳施,A.(1994年)。《美国声学学会杂志》95,2192 - 2201]。通过使用过冲条件来诱发刺激频率耳声发射(SFOAE)对这一假设进行了测试,SFOAE提供了耳蜗非线性的生理测量指标。使用改进的最大似然是/否程序估计SFOAE和行为阈值。掩蔽器是一个400毫秒的“冻结”带凹口噪声。信号是一个20毫秒、4千赫兹的短纯音,在噪声起始后1毫秒或200毫秒呈现。行为过冲结果重复了先前的研究,但在SFOAE阈值中未观察到过冲。这表明要么传出神经对耳蜗非线性的抑制作用不参与过冲,要么基于与用于研究行为过冲的刺激类似的刺激的SFOAE阈值估计程序不够灵敏,无法测量这种效应。

相似文献

2
Overshoot measured physiologically and psychophysically in the same human ears.
Hear Res. 2010 Sep 1;268(1-2):22-37. doi: 10.1016/j.heares.2010.04.007. Epub 2010 Apr 27.
3
Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
Neurosci Lett. 2014 Jan 24;559:132-5. doi: 10.1016/j.neulet.2013.11.059. Epub 2013 Dec 10.
4
Suppression of stimulus frequency otoacoustic emissions by contralateral noise.
Hear Res. 1995 Nov;91(1-2):167-77. doi: 10.1016/0378-5955(95)00187-5.
6
Is overshoot caused by an efferent reduction in cochlear gain?
Adv Exp Med Biol. 2013;787:65-72. doi: 10.1007/978-1-4614-1590-9_8.
7
Exploring the Influence of Extended High-Frequency Hearing on Cochlear Functioning at Lower Frequencies.
J Speech Lang Hear Res. 2024 Jul 9;67(7):2473-2482. doi: 10.1044/2024_JSLHR-23-00652. Epub 2024 May 31.
8
Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements.
Ear Hear. 2005 Oct;26(5):487-503. doi: 10.1097/01.aud.0000179692.81851.3b.
9
Electrically Evoked Medial Olivocochlear Efferent Effects on Stimulus Frequency Otoacoustic Emissions in Guinea Pigs.
J Assoc Res Otolaryngol. 2017 Feb;18(1):153-163. doi: 10.1007/s10162-016-0593-5. Epub 2016 Oct 31.

引用本文的文献

2
Brainstem Representation of Auditory Overshoot in Guinea Pigs Using Auditory Brainstem Responses.
Iran J Child Neurol. 2021 Spring;15(2):41-56. doi: 10.22037/ijcn.v15i2.26241. Epub 2021 Mar 1.
3
The role of the medial olivocochlear reflex in psychophysical masking and intensity resolution in humans: a review.
J Neurophysiol. 2021 Jun 1;125(6):2279-2308. doi: 10.1152/jn.00672.2020. Epub 2021 Apr 28.
4
Exploring the Role of Medial Olivocochlear Efferents on the Detection of Amplitude Modulation for Tones Presented in Noise.
J Assoc Res Otolaryngol. 2019 Aug;20(4):395-413. doi: 10.1007/s10162-019-00722-6. Epub 2019 May 28.
6
Temporal Effects on Monaural Amplitude-Modulation Sensitivity in Ipsilateral, Contralateral and Bilateral Noise.
J Assoc Res Otolaryngol. 2018 Apr;19(2):147-161. doi: 10.1007/s10162-018-0656-x. Epub 2018 Mar 5.
7
Effects of age and hearing loss on overshoot.
J Acoust Soc Am. 2016 Oct;140(4):2481. doi: 10.1121/1.4964267.
8
Spatial and temporal disparity in signals and maskers affects signal detection in non-human primates.
Hear Res. 2017 Feb;344:1-12. doi: 10.1016/j.heares.2016.10.013. Epub 2016 Oct 19.
9
Medial olivocochlear efferent reflex inhibition of human cochlear nerve responses.
Hear Res. 2016 Mar;333:216-224. doi: 10.1016/j.heares.2015.09.001. Epub 2015 Sep 11.
10
Changes in otoacoustic emissions during selective auditory and visual attention.
J Acoust Soc Am. 2015 May;137(5):2737-57. doi: 10.1121/1.4919350.

本文引用的文献

1
The relationship between precursor level and the temporal effect.
J Acoust Soc Am. 2008 Feb;123(2):946-54. doi: 10.1121/1.2821977.
2
Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans.
Ear Hear. 2006 Dec;27(6):589-607. doi: 10.1097/01.aud.0000240507.83072.e7.
4
Simultaneous measurement of noise-activated middle-ear muscle reflex and stimulus frequency otoacoustic emissions.
J Assoc Res Otolaryngol. 2006 Jun;7(2):125-39. doi: 10.1007/s10162-006-0028-9. Epub 2006 Mar 28.
5
The temporal effect in listeners with mild to moderate cochlear hearing impairment.
J Acoust Soc Am. 2005 Nov;118(5):3211-7. doi: 10.1121/1.2074787.
6
Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements.
Ear Hear. 2005 Oct;26(5):487-503. doi: 10.1097/01.aud.0000179692.81851.3b.
9
The temporal effect with notched-noise maskers: analysis in terms of input-output functions.
J Acoust Soc Am. 2004 May;115(5 Pt 1):2234-45. doi: 10.1121/1.1691036.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验