Suppr超能文献

电诱发的豚鼠内侧橄榄耳蜗传出神经对刺激频率耳声发射的影响

Electrically Evoked Medial Olivocochlear Efferent Effects on Stimulus Frequency Otoacoustic Emissions in Guinea Pigs.

作者信息

Berezina-Greene Maria A, Guinan John J

机构信息

Eaton-Peabody Lab, Mass. Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114-3002, USA.

Harvard-MIT HST Speech and Hearing Bioscience and Technology Program, Cambridge, MA, USA.

出版信息

J Assoc Res Otolaryngol. 2017 Feb;18(1):153-163. doi: 10.1007/s10162-016-0593-5. Epub 2016 Oct 31.

Abstract

Stimulus frequency otoacoustic emissions (SFOAEs) are produced by cochlear irregularities reflecting energy from the peak region of the traveling wave (TW). Activation of medial olivocochlear (MOC) efferents reduces cochlear amplification and otoacoustic emissions (OAEs). In other OAEs, MOC activation can produce enhancements. The extent of MOC enhancements of SFOAEs has not been previously studied. In anesthetized guinea pigs, we electrically stimulated MOC fibers and recorded their effects on SFOAEs. MOC stimulation mostly inhibited SFOAEs but sometimes enhanced them. Some enhancements were not near response dips and therefore cannot be explained by a reduction of wavelet cancelations. MOC stimulation always inhibited auditory-nerve compound action potentials showing that cochlear-amplifier gain was not increased. We propose that some SFOAE enhancements arise because shocks excite only a small number of MOC fibers that inhibit a few scattered outer hair cells thereby changing (perhaps increasing) cochlear irregularities and SFOAE amplitudes. Contralateral sound activation is expected to excite approximately one third of MOC efferents and may also change cochlear irregularities. Some papers suggest that large SFOAE components originate far basal of the TW peak, basal of the region that receives cochlear amplification. Using a time-frequency analysis, we separated SFOAEs into components with different latencies. At all SFOAE latencies, most SFOAE components were inhibited by MOC stimulation, but some were enhanced. The MOC inhibition of short-latency SFOAE components is consistent with these components being produced in the cochlear-amplified region near the TW peak.

摘要

刺激频率耳声发射(SFOAEs)由耳蜗不规则性产生,反映了来自行波(TW)峰值区域的能量。内侧橄榄耳蜗(MOC)传出神经的激活会降低耳蜗放大作用和耳声发射(OAEs)。在其他耳声发射中,MOC激活可产生增强作用。此前尚未研究过MOC对SFOAEs增强作用的程度。在麻醉的豚鼠中,我们电刺激MOC纤维并记录其对SFOAEs的影响。MOC刺激大多抑制SFOAEs,但有时也会增强它们。一些增强作用并非靠近反应下降点,因此无法用小波抵消的减少来解释。MOC刺激总是抑制听神经复合动作电位,表明耳蜗放大器增益并未增加。我们提出,一些SFOAE增强作用的出现是因为电刺激仅激发了少数抑制少数分散外毛细胞的MOC纤维,从而改变(可能增加)了耳蜗不规则性和SFOAE幅度。预期对侧声音激活会激发约三分之一的MOC传出神经,也可能改变耳蜗不规则性。一些论文表明,大的SFOAE成分起源于TW峰值的远基底侧,即接受耳蜗放大作用区域的基底侧。使用时频分析,我们将SFOAEs分离为具有不同潜伏期的成分。在所有SFOAE潜伏期,大多数SFOAE成分受到MOC刺激的抑制,但有些成分得到增强作用。MOC对短潜伏期SFOAE成分的抑制与这些成分在TW峰值附近的耳蜗放大区域产生一致。

相似文献

1
Electrically Evoked Medial Olivocochlear Efferent Effects on Stimulus Frequency Otoacoustic Emissions in Guinea Pigs.
J Assoc Res Otolaryngol. 2017 Feb;18(1):153-163. doi: 10.1007/s10162-016-0593-5. Epub 2016 Oct 31.
2
Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
Neurosci Lett. 2014 Jan 24;559:132-5. doi: 10.1016/j.neulet.2013.11.059. Epub 2013 Dec 10.
4
Medial olivocochlear efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs.
J Assoc Res Otolaryngol. 2003 Dec;4(4):521-40. doi: 10.1007/s10162-002-3037-3. Epub 2003 Jun 13.
5
Stimulus Frequency Otoacoustic Emission Delays and Generating Mechanisms in Guinea Pigs, Chinchillas, and Simulations.
J Assoc Res Otolaryngol. 2015 Dec;16(6):679-94. doi: 10.1007/s10162-015-0543-7. Epub 2015 Sep 15.
6
Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans.
Ear Hear. 2006 Dec;27(6):589-607. doi: 10.1097/01.aud.0000240507.83072.e7.
8
The Spatial Origins of Cochlear Amplification Assessed by Stimulus-Frequency Otoacoustic Emissions.
Biophys J. 2020 Mar 10;118(5):1183-1195. doi: 10.1016/j.bpj.2019.12.031. Epub 2020 Jan 3.
9
Responses of medial olivocochlear neurons. Specifying the central pathways of the medial olivocochlear reflex.
Exp Brain Res. 2003 Dec;153(4):491-8. doi: 10.1007/s00221-003-1679-y. Epub 2003 Oct 14.
10
Frequency tuning of medial-olivocochlear-efferent acoustic reflexes in humans as functions of probe frequency.
J Neurophysiol. 2012 Mar;107(6):1598-611. doi: 10.1152/jn.00549.2011. Epub 2011 Dec 21.

引用本文的文献

本文引用的文献

1
Localization of the Reflection Sources of Stimulus-Frequency Otoacoustic Emissions.
J Assoc Res Otolaryngol. 2016 Oct;17(5):393-401. doi: 10.1007/s10162-016-0580-x. Epub 2016 Aug 9.
2
Efferent Modulation of Stimulus Frequency Otoacoustic Emission Fine Structure.
Front Syst Neurosci. 2015 Dec 10;9:168. doi: 10.3389/fnsys.2015.00168. eCollection 2015.
3
Stimulus Frequency Otoacoustic Emission Delays and Generating Mechanisms in Guinea Pigs, Chinchillas, and Simulations.
J Assoc Res Otolaryngol. 2015 Dec;16(6):679-94. doi: 10.1007/s10162-015-0543-7. Epub 2015 Sep 15.
4
Medial olivocochlear efferent reflex inhibition of human cochlear nerve responses.
Hear Res. 2016 Mar;333:216-224. doi: 10.1016/j.heares.2015.09.001. Epub 2015 Sep 11.
5
Tuning of SFOAEs Evoked by Low-Frequency Tones Is Not Compatible with Localized Emission Generation.
J Assoc Res Otolaryngol. 2015 Jun;16(3):317-29. doi: 10.1007/s10162-015-0513-0. Epub 2015 Mar 27.
6
Contralateral efferent suppression of human hearing sensitivity.
Front Syst Neurosci. 2015 Jan 15;8:251. doi: 10.3389/fnsys.2014.00251. eCollection 2014.
7
Estimating cochlear frequency selectivity with stimulus-frequency otoacoustic emissions in chinchillas.
J Assoc Res Otolaryngol. 2014 Dec;15(6):883-96. doi: 10.1007/s10162-014-0487-3. Epub 2014 Sep 18.
8
Efferent feedback slows cochlear aging.
J Neurosci. 2014 Mar 26;34(13):4599-607. doi: 10.1523/JNEUROSCI.4923-13.2014.
9
Single-unit labeling of medial olivocochlear neurons: the cochlear frequency map for efferent axons.
J Neurophysiol. 2014 Jun 1;111(11):2177-86. doi: 10.1152/jn.00045.2014. Epub 2014 Mar 5.
10
Frequency tuning of medial-olivocochlear-efferent acoustic reflexes in humans as functions of probe frequency.
J Neurophysiol. 2012 Mar;107(6):1598-611. doi: 10.1152/jn.00549.2011. Epub 2011 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验