Ficklin Timothy P, Davol Andrew, Klisch Stephen M
Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, CA 93407.
J Biomech Eng. 2009 Apr;131(4):041008. doi: 10.1115/1.3049856.
Recently a cartilage growth finite element model (CGFEM) was developed to solve nonhomogeneous and time-dependent growth boundary-value problems (Davol et al., 2008, "A Nonlinear Finite Element Model of Cartilage Growth," Biomech. Model. Mechanobiol., 7, pp. 295-307). The CGFEM allows distinct stress constitutive equations and growth laws for the major components of the solid matrix, collagens and proteoglycans. The objective of the current work was to simulate in vitro growth of articular cartilage explants in a steady-state permeation bioreactor in order to obtain results that aid experimental design. The steady-state permeation protocol induces different types of mechanical stimuli. When the specimen is initially homogeneous, it directly induces homogeneous permeation velocities and indirectly induces nonhomogeneous solid matrix shear stresses; consequently, the steady-state permeation protocol is a good candidate for exploring two competing hypotheses for the growth laws. The analysis protocols were implemented through the alternating interaction of the two CGFEM components: poroelastic finite element analysis (FEA) using ABAQUS and a finite element growth routine using MATLAB. The CGFEM simulated 12 days of growth for immature bovine articular cartilage explants subjected to two competing hypotheses for the growth laws: one that is triggered by permeation velocity and the other by maximum shear stress. The results provide predictions for geometric, biomechanical, and biochemical parameters of grown tissue specimens that may be experimentally measured and, consequently, suggest key biomechanical measures to analyze as pilot experiments are performed. The combined approach of CGFEM analysis and pilot experiments may lead to the refinement of actual experimental protocols and a better understanding of in vitro growth of articular cartilage.
最近,为解决非均匀且随时间变化的生长边值问题,开发了一种软骨生长有限元模型(CGFEM)(达沃尔等人,2008年,《软骨生长的非线性有限元模型》,《生物力学模型与分子生物学》,第7卷,第295 - 307页)。CGFEM允许为固体基质的主要成分(胶原蛋白和蛋白聚糖)采用不同的应力本构方程和生长定律。当前工作的目的是模拟关节软骨外植体在稳态渗透生物反应器中的体外生长,以便获得有助于实验设计的结果。稳态渗透方案会诱导不同类型的机械刺激。当标本最初是均匀的时候,它直接诱导均匀的渗透速度,并间接诱导非均匀的固体基质剪应力;因此,稳态渗透方案是探索两种相互竞争的生长定律假设的理想选择。分析方案通过CGFEM的两个组件的交替相互作用来实现:使用ABAQUS进行多孔弹性有限元分析(FEA)和使用MATLAB的有限元生长程序。CGFEM模拟了未成熟牛关节软骨外植体在两种相互竞争的生长定律假设下12天的生长情况:一种由渗透速度触发,另一种由最大剪应力触发。结果提供了对生长组织标本的几何、生物力学和生化参数的预测,这些参数可以通过实验测量,因此,在进行初步实验时,建议了关键的生物力学测量方法。CGFEM分析和初步实验的结合方法可能会导致实际实验方案的完善,并更好地理解关节软骨的体外生长。