Suppr超能文献

综述:电子病历在健康结局研究中的应用:文献综述。

Review: use of electronic medical records for health outcomes research: a literature review.

机构信息

Cerner LifeSciences, Beverly Hills, CA, USA.

出版信息

Med Care Res Rev. 2009 Dec;66(6):611-38. doi: 10.1177/1077558709332440. Epub 2009 Mar 11.

Abstract

This review assessed the use of electronic medical record (EMR) systems in outcomes research. We systematically searched PubMed to identify articles published from January 2000 to January 2007 involving EMR use for outpatient-based outcomes research in the United States. EMR-based outcomes research studies (n = 126) have increased sixfold since 2000. Although chronic conditions were most common, EMRs were also used to study less common diseases, highlighting the EMRs' flexibility to examine large cohorts as well as identify patients with rare diseases. Traditional multi-variate modeling techniques were the most commonly used technique to address confounding and potential selection bias. Data validation was a component in a quarter of studies, and many evaluated the EMR's ability to achieve similar results previously achieved using other data sources. Investigators using EMR data should aim for consistent terminology, focus on adequately describing their methods, and consider appropriate statistical methods to control for confounding and treatment-selection bias.

摘要

这篇综述评估了电子病历(EMR)系统在结局研究中的应用。我们系统地检索了 PubMed,以确定从 2000 年 1 月至 2007 年 1 月期间在美国发表的涉及基于门诊的结局研究中使用 EMR 的文章。自 2000 年以来,基于 EMR 的结局研究论文数量增加了六倍。尽管慢性病最为常见,但 EMR 也用于研究不太常见的疾病,突出了 EMR 灵活地检查大量队列以及识别罕见疾病患者的能力。传统的多变量建模技术是最常用的解决混杂和潜在选择偏倚的技术。有四分之一的研究涉及数据验证,许多研究评估了 EMR 实现以前使用其他数据源获得的类似结果的能力。使用 EMR 数据的研究人员应致力于使用一致的术语,重点充分描述其方法,并考虑适当的统计方法来控制混杂和治疗选择偏倚。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验