Kohler A, Böcker U, Warringer J, Blomberg A, Omholt S W, Stark E, Martens H
Nofima Mat, Centre for Biospectroscopy and Data Modelling, Osloveien 1, 1430 As, Norway.
Appl Spectrosc. 2009 Mar;63(3):296-305. doi: 10.1366/000370209787598906.
Fourier transform infrared (FT-IR) spectroscopy is a powerful tool for characterizing biological tissues and organisms, but it is plagued by replicate variation of various sources. Here, a method for estimating and correcting unwanted replicate variation in multivariate measurement signals, based on extended multiplicative signal correction (EMSC), is presented. Systematic patterns of unwanted methodological variations are estimated from replicate spectra, modeled by a linear subspace model, and implemented into EMSC. The method is applied to FT-IR spectra of two different sets of microorganisms (different double gene knockout strains of Saccharomyces cerevisiae and different species of Listeria) and compared to other preprocessing methods used in FT-IR absorption spectroscopy of microorganisms. The EMSC replicate correction turns out to perform best among the compared methods.
傅里叶变换红外(FT-IR)光谱法是表征生物组织和生物体的有力工具,但它受到各种来源的重复测量差异的困扰。本文提出了一种基于扩展乘法信号校正(EMSC)的方法,用于估计和校正多变量测量信号中不必要的重复测量差异。从重复光谱中估计出不必要的方法学差异的系统模式,通过线性子空间模型进行建模,并应用于EMSC。该方法应用于两组不同微生物(酿酒酵母的不同双基因敲除菌株和不同种类的李斯特菌)的FT-IR光谱,并与微生物FT-IR吸收光谱中使用的其他预处理方法进行比较。结果表明,在比较的方法中,EMSC重复校正的性能最佳。