Bruun Susanne W, Kohler Achim, Adt Isabelle, Sockalingum Ganesh D, Manfait Michel, Martens Harald
Biochemistry and Nutrition Group, BioCentrum-DTU, Technical University of Denmark, building 224, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark.
Appl Spectrosc. 2006 Sep;60(9):1029-39. doi: 10.1366/000370206778397371.
Fourier transform infrared (FT-IR) spectroscopy is a valuable technique for characterization of biological samples, providing a detailed fingerprint of the major chemical constituents. However, water vapor and CO(2) in the beam path often cause interferences in the spectra, which can hamper the data analysis and interpretation of results. In this paper we present a new method for removal of the spectral contributions due to atmospheric water and CO(2) from attenuated total reflection (ATR)-FT-IR spectra. In the IR spectrum, four separate wavenumber regions were defined, each containing an absorption band from either water vapor or CO(2). From two calibration data sets, gas model spectra were estimated in each of the four spectral regions, and these model spectra were applied for correction of gas absorptions in two independent test sets (spectra of aqueous solutions and a yeast biofilm (C. albicans) growing on an ATR crystal, respectively). The amounts of the atmospheric gases as expressed by the model spectra were estimated by regression, using second-derivative transformed spectra, and the estimated gas spectra could subsequently be subtracted from the sample spectra. For spectra of the growing yeast biofilm, the gas correction revealed otherwise hidden variations of relevance for modeling the growth dynamics. As the presented method improved the interpretation of the principle component analysis (PCA) models, it has proven to be a valuable tool for filtering atmospheric variation in ATR-FT-IR spectra.
傅里叶变换红外(FT-IR)光谱法是表征生物样品的一项重要技术,可提供主要化学成分的详细指纹图谱。然而,光路中的水蒸气和二氧化碳常常会对光谱产生干扰,这可能会妨碍数据分析和结果解读。在本文中,我们提出了一种新方法,用于去除衰减全反射(ATR)-FT-IR光谱中由大气中的水和二氧化碳产生的光谱贡献。在红外光谱中,定义了四个独立的波数区域,每个区域都包含来自水蒸气或二氧化碳的一个吸收带。从两个校准数据集出发,在四个光谱区域中的每个区域估算气体模型光谱,并将这些模型光谱应用于校正两个独立测试集(分别为水溶液光谱和生长在ATR晶体上的酵母生物膜(白色念珠菌)光谱)中的气体吸收。通过使用二阶导数变换光谱,采用回归法估算由模型光谱表示的大气气体量,随后可从样品光谱中减去估算出的气体光谱。对于生长中的酵母生物膜光谱,气体校正揭示了原本隐藏的、与生长动力学建模相关的变化。由于所提出的方法改进了主成分分析(PCA)模型的解读,它已被证明是过滤ATR-FT-IR光谱中大气变化的一种重要工具。