Suppr超能文献

Internal and external TEA block in single cloned K+ channels.

作者信息

Kirsch G E, Taglialatela M, Brown A M

机构信息

Department of Anesthesiology, Baylor College of Medicine, Houston, Texas 77030.

出版信息

Am J Physiol. 1991 Oct;261(4 Pt 1):C583-90. doi: 10.1152/ajpcell.1991.261.4.C583.

Abstract

Tetraethylammonium (TEA) has been used recently to probe natural and mutational variants of voltage-dependent K+ channels encoded by cDNA clones. Its usefulness as a probe of channel structure prompted us to examine the molecular mechanism by which TEA blocks single-channel currents in Xenopus oocytes expressing the rat brain K+ channel, RCK2. TEA at the intracellular surface of membrane patches decreased channel open time and increased the duration of closed intervals. Tetrapentylammonium had similar but more potent effects. Extracellular application of TEA caused an apparent reduction of single-channel amplitude. Block was slower at the high-affinity internal site than at the low-affinity external site. Internal TEA selectively blocks open K+ channels, and the voltage dependence of the block indicates that the binding site lies within the membrane electric field at a point 25% of the distance from the cytoplasmic margin. External TEA also interacts with the open channel but is less sensitive to membrane potential. The results indicate that the internal and external TEA binding sites define the inner and outer margins of the aqueous pore.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验