Suppr超能文献

摇椅式钾通道的外部四乙铵(TEA)阻断与选择性过滤器内钾离子的移动相关联。

External TEA block of shaker K+ channels is coupled to the movement of K+ ions within the selectivity filter.

作者信息

Thompson Jill, Begenisich Ted

机构信息

Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA.

出版信息

J Gen Physiol. 2003 Aug;122(2):239-46. doi: 10.1085/jgp.200308848.

Abstract

Recent molecular dynamic simulations and electrostatic calculations suggested that the external TEA binding site in K+ channels is outside the membrane electric field. However, it has been known for some time that external TEA block of Shaker K+ channels is voltage dependent. To reconcile these two results, we reexamined the voltage dependence of block of Shaker K+ channels by external TEA. We found that the voltage dependence of TEA block all but disappeared in solutions in which K+ ions were replaced by Rb+. These and other results with various concentrations of internal K+ and Rb+ ions suggest that the external TEA binding site is not within the membrane electric field and that the voltage dependence of TEA block in K+ solutions arises through a coupling with the movement of K+ ions through part of the membrane electric field. Our results suggest that external TEA block is coupled to two opposing voltage-dependent movements of K+ ions in the pore: (a) an inward shift of the average position of ions in the selectivity filter equivalent to a single ion moving approximately 37% into the pore from the external surface; and (b) a movement of internal K+ ions into a vestibule binding site located approximately 13% into the membrane electric field measured from the internal surface. The minimal voltage dependence of external TEA block in Rb+ solutions results from a minimal occupancy of the vestibule site by Rb+ ions and because the energy profile of the selectivity filter favors a more inward distribution of Rb+ occupancy.

摘要

最近的分子动力学模拟和静电计算表明,钾离子通道外部的四乙铵(TEA)结合位点位于膜电场之外。然而,一段时间以来人们已经知道,Shaker钾离子通道的外部TEA阻断具有电压依赖性。为了协调这两个结果,我们重新研究了外部TEA对Shaker钾离子通道阻断的电压依赖性。我们发现,在钾离子被铷离子取代的溶液中,TEA阻断的电压依赖性几乎消失。这些以及其他关于不同浓度内部钾离子和铷离子的结果表明,外部TEA结合位点不在膜电场内,并且钾离子溶液中TEA阻断的电压依赖性是通过与钾离子穿过部分膜电场的运动耦合产生的。我们的结果表明,外部TEA阻断与孔中钾离子的两种相反的电压依赖性运动相关:(a)选择性过滤器中离子平均位置的向内移动,相当于单个离子从外表面向孔内移动约37%;(b)内部钾离子向一个前庭结合位点的移动,该位点从内表面起位于膜电场内约13%处。铷离子溶液中外部TEA阻断的最小电压依赖性是由于前庭位点被铷离子占据最少,并且因为选择性过滤器的能量分布有利于铷离子占据更向内的分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/323f/2229542/2f6b60a9bf7d/200308848f1.jpg

相似文献

2
Two stable, conducting conformations of the selectivity filter in Shaker K+ channels.
J Gen Physiol. 2005 Jun;125(6):619-29. doi: 10.1085/jgp.200509251. Epub 2005 May 16.
3
Affinity and location of an internal K+ ion binding site in shaker K channels.
J Gen Physiol. 2001 May;117(5):373-84. doi: 10.1085/jgp.117.5.373.
4
Functional identification of ion binding sites at the internal end of the pore in Shaker K+ channels.
J Physiol. 2003 May 15;549(Pt 1):107-20. doi: 10.1113/jphysiol.2002.038646. Epub 2003 Mar 28.
10
External pore collapse as an inactivation mechanism for Kv4.3 K+ channels.
J Membr Biol. 2002 Jul 1;188(1):73-86. doi: 10.1007/s00232-001-0173-3.

引用本文的文献

3
The voltage-dependent gate in MthK potassium channels is located at the selectivity filter.
Nat Struct Mol Biol. 2013 Feb;20(2):159-66. doi: 10.1038/nsmb.2473. Epub 2012 Dec 23.
4
Tuning the tetraethylammonium sensitivity of potassium channel Kcv by subunit combination.
J Gen Physiol. 2012 Apr;139(4):295-304. doi: 10.1085/jgp.201110725.
5
Ion selectivity and current saturation in inward-rectifier K+ channels.
J Gen Physiol. 2012 Feb;139(2):145-57. doi: 10.1085/jgp.201110727.
6
Separate gating mechanisms mediate the regulation of K2P potassium channel TASK-2 by intra- and extracellular pH.
J Biol Chem. 2010 May 28;285(22):16467-75. doi: 10.1074/jbc.M110.107060. Epub 2010 Mar 29.
7
Intrinsic versus extrinsic voltage sensitivity of blocker interaction with an ion channel pore.
J Gen Physiol. 2010 Feb;135(2):149-67. doi: 10.1085/jgp.200910324.
8
Blocking pore-open mutants of CLC-0 by amphiphilic blockers.
J Gen Physiol. 2009 Jan;133(1):43-58. doi: 10.1085/jgp.200810004. Epub 2008 Dec 15.

本文引用的文献

1
Energetics of ion conduction through the K+ channel.
Nature. 2001 Nov 1;414(6859):73-7. doi: 10.1038/35102067.
2
Energetic optimization of ion conduction rate by the K+ selectivity filter.
Nature. 2001 Nov 1;414(6859):37-42. doi: 10.1038/35102000.
3
Time course of TEA(+)-induced anomalous rectification in squid giant axons.
J Gen Physiol. 1966 Nov;50(2):491-503. doi: 10.1085/jgp.50.2.491.
5
Mechanisms of tetraethylammonium ion block in the KcsA potassium channel.
FEBS Lett. 2001 Apr 27;495(3):191-6. doi: 10.1016/s0014-5793(01)02381-x.
6
Affinity and location of an internal K+ ion binding site in shaker K channels.
J Gen Physiol. 2001 May;117(5):373-84. doi: 10.1085/jgp.117.5.373.
7
Ion channels, permeation, and electrostatics: insight into the function of KcsA.
Biochemistry. 2000 Nov 7;39(44):13295-306. doi: 10.1021/bi001567v.
9
The structure of the potassium channel: molecular basis of K+ conduction and selectivity.
Science. 1998 Apr 3;280(5360):69-77. doi: 10.1126/science.280.5360.69.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验